(p, q)-Hermite–Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- for .
- (i)
- ;
- (ii)
- ;
- (iii)
- for .
3. Main Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Bangerezako, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef]
- Ernst, T. The History of q-Calculus and a New Method; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Gauchman, H. Integral inequalities in q-Calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. (p, q)-Integral inequalities. RGMIA Res. Rep. Coll. 2016, 19, 97. [Google Scholar]
- Tunç, M.; Göv, E. Some integral inequalities via (p, q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 95. [Google Scholar]
- Tunç, M.; Göv, E. (p, q)-integral inequalities for convex functions. RGMIA Res. Rep. Coll. 2016, 19, 98. [Google Scholar]
- Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p, q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 1, 301. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. A note on the (p, q) Hermite polynomials. Appl. Math. Inf. Sci. 2018, 12, 227–231. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Some Approximation Results by (p, q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402, [Corrigendum: Appl. Math. Comput. 2015, 269, 744–746.]. [Google Scholar] [CrossRef]
- Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and p, q-special functions. J. Math. Anal. Appl. 2007, 335, 268–279. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the (p, q)-Gamma and the (p, q)-Beta functions. arXiv 2015, arXiv:1506.07394. [Google Scholar]
- Hadamard, J. Etude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 9, 171–216. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. App. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p, q)-Hermite–Hadamard inequalities and (p, q)-estimates for midpoint typeinequalities via convex and quasi-convex functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite–Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal. 2019, 13, 675–686. [Google Scholar]
- Dragomir, S.S. Two refinements of Hadamard’s inequalities. Coll. Sci. Pap. Fac. Kragujevac 1990, 11, 23–26. [Google Scholar]
- Pachpatte, B.G. Mathematical Inequalities; North-Holland Library, Elsevier Science: Amsterdam, Holland, 2005; Volume 67. [Google Scholar]
- Dragomir, S.S. Some integral inequalities for differentiable convex functions. Contrib. Sec. Math. Technol. Sci. 1992, 13, 13–17. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabseang, J.; Nonlaopon, K.; Tariboon, J. (p, q)-Hermite–Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions. Axioms 2019, 8, 68. https://doi.org/10.3390/axioms8020068
Prabseang J, Nonlaopon K, Tariboon J. (p, q)-Hermite–Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions. Axioms. 2019; 8(2):68. https://doi.org/10.3390/axioms8020068
Chicago/Turabian StylePrabseang, Julalak, Kamsing Nonlaopon, and Jessada Tariboon. 2019. "(p, q)-Hermite–Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions" Axioms 8, no. 2: 68. https://doi.org/10.3390/axioms8020068
APA StylePrabseang, J., Nonlaopon, K., & Tariboon, J. (2019). (p, q)-Hermite–Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions. Axioms, 8(2), 68. https://doi.org/10.3390/axioms8020068