Approximation Properties of an Extended Family of the Szász–Mirakjan Beta-Type Operators
Abstract
:1. Introduction, Definitions and Preliminaries
2. A Set of Auxiliary Results
3. Local Approximation
4. A Voronovskaja-Type Approximation Theorem
5. Concluding Remarks and Observations
Author Contributions
Funding
Conflicts of Interest
References
- Szász, O. Generalizations of S. Bernstein’s polynomials to the infinite interval. J. Res. Nat. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Mirakjan, G.M. Approximation des fonctions continues au moyen de polynômes de la forme . C. R. (Doklady) Acad. Sci. URSS (New Ser.) 1941, 31, 201–205. [Google Scholar]
- Duman, O.; Özarslan, M.A. Szász-Mirakjan-type operators providing a better error estimation. Appl. Math. Lett. 2007, 20, 1184–1188. [Google Scholar] [CrossRef]
- Gal, S.G. Approximation with an arbitrary order by generalized Szász-Mirakjan operators. Stud. Univ. Babeş-Bolyai Math. 2014, 59, 77–81. [Google Scholar]
- Gupta, V.; Mahmudov, N. Approximation properties of the q-Szász-Mirakjan-Beta operators. Indian J. Ind. Appl. Math. 2012, 3, 41–53. [Google Scholar]
- Gupta, V.; Noor, M.A. Convergence of derivatives for certain mixed Szász-Beta operators. J. Math. Anal. Appl. 2006, 321, 1–9. [Google Scholar] [CrossRef]
- İçöz, G.; Mohapatra, R.N. Approximation properties by q-Durrmeyer-Stancu operators. Anal. Theory Appl. 2013, 29, 373–383. [Google Scholar]
- Gupta, V.; Srivastava, H.M. A general family of the Srivastava-Gupta operators preserving linear functions. Eur. J. Pure Appl. Math. 2018, 11, 575–579. [Google Scholar] [CrossRef]
- Gupta, V.; Srivastava, G.S.; Sahai, A. On simultaneous approximation by Szász-beta operators. Soochow J. Math. 1995, 21, 1–11. [Google Scholar]
- Păltănea, R. Modified Szász-Mirakjan operators of integral form. Carpathian J. Math. 2008, 24, 378–385. [Google Scholar]
- Srivastava, H.M.; Mursaleen, M.; Alotaibi, A.M.; Nasiruzzaman, M.; Al-Abied, A.A.H. Some approximation results involving the q-Szász-Mirakjan-Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 2017, 40, 5437–5452. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Özger, F.; Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 2019, 11, 316. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zeng, X.-M. Approximation by means of the Szász-Bézier integral operators. Int. J. Pure Appl. Math. 2004, 14, 283–294. [Google Scholar]
- Xie, L.-S.; Xie, T.-F. Approximation theorems for localized Szász-Mirakjan operators. J. Approx. Theory 2008, 152, 125–134. [Google Scholar] [CrossRef]
- Zeng, X.-M. Approximation of absolutely continuous functions by Stancu Beta operators. Ukrainian Math. J. 2012, 63, 1787–1794. [Google Scholar] [CrossRef]
- Duman, O.; Özarslan, M.A.; Aktuğlu, H. Better error estimates for Szász-Mirakjan-Beta operators. J. Comput. Anal. Appl. 2008, 10, 53–59. [Google Scholar]
- Özarslan, M.A.; Aktuğlu, H. A-Statistical approximation of generalized Szász-Mirakjan-Beta operators. Appl. Math. Lett. 2011, 24, 1785–1790. [Google Scholar] [CrossRef]
- Qi, Q.-L.; Zhang, Y.-P. Pointwise approximation for certain mixed Szász-Beta operators. In Further Progress in Analysis, Proceedings of the Sixth International Conference (ISAAC 2002) on Clifford Algebras and Their Applications in Mathematical Physics, Tennessee Technological University, Cookeville, TN, USA, 20–25 May 2002; World Scientific Publishing Company: Singapore, 2009; pp. 152–164. [Google Scholar]
- Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 1994, 55, 99–124. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef]
- Özergin, E.; Özarslan, M.A.; Altın, A. Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 2011, 235, 4601–4610. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-D.; Srivastava, H.M.; Yao, J.-C. Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions. Appl. Math. Inform. Sci. 2015, 9, 1731–1738. [Google Scholar]
- Srivastava, H.M.; Parmar, R.K.; Chopra, P. A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions. Axioms 2012, 1, 238–258. [Google Scholar] [CrossRef]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1993. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; İçöz, G.; Çekim, B. Approximation Properties of an Extended Family of the Szász–Mirakjan Beta-Type Operators. Axioms 2019, 8, 111. https://doi.org/10.3390/axioms8040111
Srivastava HM, İçöz G, Çekim B. Approximation Properties of an Extended Family of the Szász–Mirakjan Beta-Type Operators. Axioms. 2019; 8(4):111. https://doi.org/10.3390/axioms8040111
Chicago/Turabian StyleSrivastava, Hari Mohan, Gürhan İçöz, and Bayram Çekim. 2019. "Approximation Properties of an Extended Family of the Szász–Mirakjan Beta-Type Operators" Axioms 8, no. 4: 111. https://doi.org/10.3390/axioms8040111
APA StyleSrivastava, H. M., İçöz, G., & Çekim, B. (2019). Approximation Properties of an Extended Family of the Szász–Mirakjan Beta-Type Operators. Axioms, 8(4), 111. https://doi.org/10.3390/axioms8040111