An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops
Abstract
:1. Introduction
2. Design Considerations
3. System Development
4. System Evaluation
5. Future Scope: Scalability for Other Application Domains
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehler, L.E. Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 2006, 62, 787–789. [Google Scholar] [CrossRef] [PubMed]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Glen, D.M.; Brain, P. Pheromone-trap catch in relation to the phenology of codling moth (Cydia pomonella). Ann. Appl. Biol. 1982, 101, 429–440. [Google Scholar] [CrossRef]
- Higley, L.G.; Peterson, R.K.; Radcliffe, E.B.; Hutchison, W.D.; Cancelado, R.E. Economic decision rules for IPM. In Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies; Radcliffe, E.B., Hutchison, W.D., Cancelado, R.E., Eds.; Cambridge University Press: New York, NY, USA, 2009; pp. 25–32. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Insect pest monitoring with camera-equipped traps: Strengths and limitations. J. Pest Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Beers, E.H.; Brunner, J.F.; Willett, M.J.; Warner, G.M. Codling Moth. In Orchard Pest Management a Resource Book for the Pacific Northwest; Good Fruit Grower Yakima: Yakima, WA, USA, 1993; pp. 63–68. [Google Scholar]
- Remote Pest Management with Automated Traps. Available online: https://blog.semios.com/remote-pest-management-with-automated-traps (accessed on 10 December 2021).
- Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Cheng, H.; Cheng, Q.; Zhou, H.; Li, M.; Fan, Y.; Shan, G.; Damerow, L.; Lammers, P.S.; Jones, S.B. A smart-vision algorithm for counting whiteflies and thrips on sticky traps using two-dimensional Fourier transform spectrum. Biosyst. Eng. 2017, 153, 82–88. [Google Scholar] [CrossRef]
- Cardim Ferreira Lima, M.; Damascena de Almeida Leandro, M.E.; Valero, C.; Pereira Coronel, L.C.; Gonçalves Bazzo, C.O. Automatic detection and monitoring of insect pests—A review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Bjerge, K.; Nielsen, J.B.; Sepstrup, M.V.; Helsing-Nielsen, F.; Høye, T.T. An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning. Sensors 2021, 21, 343. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, A.; Maini, S.; Molari, G.; Rondelli, V. Automatic trap for moth detection in integrated pest management. Bull. Insectol. 2011, 64, 247–251. [Google Scholar]
- Zhao, J.C.; Zhang, J.F.; Feng, Y.; Guo, J.X. The study and application of the IOT technology in agriculture. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; pp. 462–465. [Google Scholar]
- Prathibha, S.R.; Hongal, A.; Jyothi, M.P. IoT based monitoring system in smart agriculture. In Proceedings of the 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore, India, 16–17 March 2017; pp. 81–84. [Google Scholar] [CrossRef]
- Vanaja, K.J.; Suresh, A.; Srilatha, S.; Kumar, K.V.; Bharath, M. IOT based agriculture system using node MCU. Int. Res. J. Eng. Technol. 2018, 5, 3025–3028. [Google Scholar]
- Ranjan, R.; Khot, L.R.; Peters, R.T.; Salazar-Gutierrez, M.R.; Shi, G. In-field crop physiology sensing aided real-time apple fruit surface temperature monitoring for sunburn prediction. Comput. Electron. Agric. 2020, 157, 105558. [Google Scholar] [CrossRef]
- Deepa, B.; Anusha, C.; Devi, P.C. Smart agriculture using iot. In Intelligent System Design; Satapathy, S., Bhateja, V., Janakiramaiah, B., Chen, Y.W., Eds.; Springer: Singapore, 2021; Volume 1171, pp. 11–19. [Google Scholar] [CrossRef]
- Knight, A.L.; Larson, D.; Christianson, B. Flight tunnel and field evaluations of sticky traps for monitoring codling moth (Lepidoptera: Tortricidae) in sex pheromone-treated orchards. J. Entomol. Soc. Br. Columbia 2002, 99, 107–116. [Google Scholar]
- Knight, A.L.; Fisher, J. Increased catch of codling moth (Lepidoptera: Tortricidae) in semiochemical-baited orange plastic delta-shaped traps. Environ. Entomol. 2006, 35, 1597–1602. [Google Scholar] [CrossRef]
- Codling Moth in Utah Orchards. Available online: https://digitalcommons.usu.edu/extension_curall/880/ (accessed on 9 August 2021).
- Trapview. Available online: https://trapview.com/project/better-earning-apple/ (accessed on 9 August 2021).
- METOS by Pessl Instruments. Available online: https://metos.at/iscout/ (accessed on 9 August 2021).
- Technology Takes Field Scouting to the Next Level. Available online: https://www.precisionag.com/in-field-technologies/connectivity/technology-takes-field-scouting-to-the-next-level/ (accessed on 9 August 2021).
- Yadav, S.; Kapoor, H.K. Lightweight Message Encoding of Power-Gating Controller for On-Time Wakeup of Gated Router in Network-on-Chip. In Proceedings of the 2019 9th International Symposium on Embedded Computing and System Design (ISED), Kollam, India, 13–14 December 2019; pp. 1–6. [Google Scholar]
- Wahl, J.D.; Zhang, J.X. Development and Power Characterization of an IoT Network for Agricultural Imaging Applications. J. Inf. Technol. 2021, 12, 214–219. [Google Scholar] [CrossRef]
- Khan, S.F.; Ismail, M.Y. An Investigation into the Challenges and Opportunities Associated with the Application of Internet of Things (IoT) in the Agricultural Sector-A Review. J. Comput. Sci. 2018, 14, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Dai, Z.; Chen, Z. Development of radio-frequency sensor wake-up with unmanned aerial vehicles as an aerial gateway. Sensors 2019, 19, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Dai, H.N.; Wang, H.; Imran, M.; Wang, X.; Shoaib, M. UAV-enabled data acquisition scheme with directional wireless energy transfer for Internet of Things. Comput. Commun. 2020, 155, 184–196. [Google Scholar] [CrossRef]
Component | Manufacturer | Purpose | Unit Cost (USD) |
---|---|---|---|
Arducam IoTai ESP32 CAM WiFi Bluetooth PSRAM and development board with OV2640 camera module | Arducam, Hong Kong, China | Microcontroller /Imager | 19.99 |
3.7 v, 350 mAh Lithium Polymer Ion battery | Adafruit Industries LLC., New York City, NY, USA | Power | 5.95 |
180° fisheye clip on lens | Walmart, Inc., Bentonville, AR, USA | Fish-eye lens 1 | 5.99 |
Clear mini pencil box | S.P. Richards Co., Atlanta, GA, USA | Enclosure | 0.74 |
Total 2 | 32.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrader, M.J.; Smytheman, P.; Beers, E.H.; Khot, L.R. An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops. Machines 2022, 10, 52. https://doi.org/10.3390/machines10010052
Schrader MJ, Smytheman P, Beers EH, Khot LR. An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops. Machines. 2022; 10(1):52. https://doi.org/10.3390/machines10010052
Chicago/Turabian StyleSchrader, Mark Jacob, Peter Smytheman, Elizabeth H. Beers, and Lav R. Khot. 2022. "An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops" Machines 10, no. 1: 52. https://doi.org/10.3390/machines10010052
APA StyleSchrader, M. J., Smytheman, P., Beers, E. H., & Khot, L. R. (2022). An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops. Machines, 10(1), 52. https://doi.org/10.3390/machines10010052