Towards Active Safety Driving: Controller Design of an Active Rear Steering System for Intelligent Vehicles
Abstract
:1. Introduction
2. Control System Framework for Human Driver and ARS System Based on SMPC
3. Modelling
3.1. Driver Model
3.2. 4WS Vehicle Dynamic Model
4. Active Rear Steering System Design
4.1. SMPC Controller
4.2. Active Safety Performance
4.3. Event-Triggered Control
5. Simulation Results and Discussion
5.1. Case Study A
5.2. Case Study B
5.3. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Hang, P.; Lv, C.; Huang, C.; Xing, Y.; Hu, Z. Cooperative decision making of connected automated vehicles at multi-lane merging zone: A coalitional game approach. IEEE Trans. Intell. Transp. Syst. 2021, 23, 3829–3841. [Google Scholar] [CrossRef]
- Hang, P.; Huang, C.; Hu, Z.; Lv, C. Driving Conflict Resolution of Autonomous Vehicles at Unsignalized Intersections: A Differential Game Approach. IEEE/ASME Trans. Mechatron. 2022. [Google Scholar] [CrossRef]
- Doumiati, M.; Sename, O.; Dugard, L.; Martinez-Molinaa, J.-J.; Gasparb, P.; Szabo, Z. Integrated vehicle dynamics control via coordination of active front steering and rear braking. Eur. J. Control. 2013, 19, 121–143. [Google Scholar] [CrossRef] [Green Version]
- Ahmadian, N.; Khosravi, A.; Sarhadi, P. Integrated model reference adaptive control to coordinate active front steering and direct yaw moment control. ISA Trans. 2020, 106, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Song, J. Integrated vehicle dynamic controls using active rear wheel steering and four wheel braking. Int. J. Veh. Syst. Model. Test. 2018, 13, 26–43. [Google Scholar]
- Peng, H.; Chen, X. Active Safety Control of X-by-Wire Electric Vehicles: A Survey. SAE Int. J. Veh. Dyn. Stab. NVH 2022, 6, 115–133. [Google Scholar] [CrossRef]
- Ye, Z.; Xie, W.; Yin, Y.; Fu, Z. Dynamic rollover prediction of heavy vehicles considering critical frequency. Automot. Innov. 2020, 3, 158–168. [Google Scholar] [CrossRef]
- Aouadj, N.; Hartani, K.; Fatiha, M. New integrated vehicle dynamics control system based on the coordination of active front steering, direct yaw control, and electric differential for improvements in vehicle handling and stability. SAE Int. J. Veh. Dyn. Stab. NVH 2020, 4, 119–133. [Google Scholar] [CrossRef]
- Xue, W.; Zheng, L. Active collision avoidance system design based on model predictive control with varying sampling time. Automot. Innov. 2020, 3, 62–72. [Google Scholar] [CrossRef]
- Vignati, M.; Sabbioni, E. A cooperative control strategy for yaw rate and sideslip angle control combining torque vectoring with rear wheel steering. Veh. Syst. Dyn. 2021, 60, 1668–1701. [Google Scholar] [CrossRef]
- Pan, K.; Zheng, H.; Wu, J.; Xiao, H. Research on Steering Control of Multi-Axle Steering Heavy Commercial Vehicle Based on Reducing Tire Wear. SAE Int. J. Veh. Dyn. Stab. NVH 2020, 4, 67–80. [Google Scholar]
- Bredthauer, L.; Lynch, D. Use of active rear steering to achieve desired vehicle transient lateral dynamics. SAE Technical Paper. 2018. Available online: https://saemobilus.sae.org/content/2018-01-0565/ (accessed on 14 June 2022).
- Zhang, J.; Zheng, H.; Zhao, M. Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control. SAE Technical Paper. 2018. Available online: https://saemobilus.sae.org/content/2018-01-1593/ (accessed on 14 June 2022).
- Zhang, Z.; Huang, M.; Ji, M.; Zhu, S. Design of the linear quadratic control strategy and the closed-loop system for the active four-wheel-steering vehicle. SAE Int. J. Passeng. Cars-Mech. Syst. 2015, 8, 354–363. [Google Scholar] [CrossRef]
- Hang, P.; Lou, B.; Lv, C. Nonlinear Predictive Motion Control for Autonomous Mobile Robots Considering Active Fault-Tolerant Control and Regenerative Braking. Sensors 2022, 22, 3939. [Google Scholar] [CrossRef]
- Yu, S.; Li, W.; Wang, W.; Qu, T. Nonlinear control of active four wheel steer-by-wire vehicles. IEEE Access 2019, 7, 127117–127127. [Google Scholar] [CrossRef]
- Tian, J.; Ding, J.; Tai, Y.; Chen, N. Hierarchical control of nonlinear active four-wheel-steering vehicles. Energies 2018, 11, 2930. [Google Scholar] [CrossRef] [Green Version]
- Kreutz, M.; Horn, M.; Zehetner, J. Improving vehicle dynamics by active rear wheel steering systems. Veh. Syst. Dyn. 2009, 47, 1551–1564. [Google Scholar] [CrossRef]
- Hang, P.; Xia, X.; Chen, X. Handling stability advancement with 4WS and DYC coordinated control: A gain-scheduled robust control approach. IEEE Trans. Veh. Technol. 2021, 70, 3164–3174. [Google Scholar] [CrossRef]
- Wu, L.; Ma, F.; Pu, Y.; Yin, H. Integrated Effects of Active Suspension and Rear-Wheel Steering Control Systems on Vehicle Lateral Stability. SAE Technical Paper. 2017. Available online: https://saemobilus.sae.org/content/2017-01-0257/ (accessed on 14 June 2022).
- Zhou, Z.; Huang, M.; Zhao, Y.; Fang, C. Vehicle Stability Control through Optimized Coordination of Active Rear Steering and Differential Driving/Braking. SAE Int. J. Passeng. Cars-Mech. Syst. 2018, 11, 239–248. [Google Scholar] [CrossRef]
- Zhang, B.; Khajepour, A.; Goodarzi, A. Vehicle yaw stability control using active rear steering: Development and experimental validation. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2017, 231, 333–345. [Google Scholar] [CrossRef]
- Song, J. Integrated control of brake pressure and rear-wheel steering to improve lateral stability with fuzzy logic. Int. J. Automot. Technol. 2012, 13, 563–570. [Google Scholar] [CrossRef]
- Zhang, Y.; Khajepour, A.; Xie, X. Rollover prevention for sport utility vehicles using a pulsed active rear-steering strategy. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2016, 230, 1239–1253. [Google Scholar] [CrossRef]
- Hang, P.; Chen, X. Towards Autonomous Driving: Review and Perspectives on Configuration and Control of Four-Wheel Independent Drive/Steering Electric Vehicles. Actuators 2021, 10, 184. [Google Scholar] [CrossRef]
- Enache, N.M.; Guegan, S.; Desnoyer, F.; Vorobieva, H. Lane keeping and lane departure avoidance by rear wheels steering. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, 3–7 June 2012; pp. 359–364. [Google Scholar]
- Lee, S.; Yakub, F.; Kasahara, M.; Mori, Y. Rollover prevention with predictive control of differential braking and rear wheel steering. In Proceedings of the 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Manila, Philippines, 12–15 November 2013; pp. 144–149. [Google Scholar]
- Yu, C.; Zheng, Y.; Shyrokau, B.; Ivanov, V. MPC-based path following design for automated vehicles with rear wheel steering. In Proceedings of the 2021 IEEE International Conference on Mechatronics (ICM), Chiba, Japan, 7–9 March 2021; pp. 1–6. [Google Scholar]
- Zhang, H.; Heng, B.; Zhao, W. Path Tracking Control for Active Rear Steering Vehicles Considering Driver Steering Characteristics. IEEE Access 2020, 8, 98009–98017. [Google Scholar] [CrossRef]
- Hang, P.; Chen, X.; Wang, W. Cooperative control framework for human driver and active rear steering system to advance active safety. IEEE Trans. Intell. Veh. 2021, 6, 460–469. [Google Scholar] [CrossRef]
- Dai, P.; Katupitiya, J. Force control for path following of a 4WS4WD vehicle by the integration of PSO and SMC. Veh. Syst. Dyn. 2018, 56, 1682–1716. [Google Scholar] [CrossRef]
- Wu, Y.; Li, B.; Zhang, N.; Du, H.; Zhang, B. Rear-steering based decentralized control of four-wheel steering vehicle. IEEE Trans. Veh. Technol. 2020, 69, 10899–10913. [Google Scholar] [CrossRef]
- Precup, R.E.; Preitl, S. Stability and sensitivity analysis of fuzzy control systems. Mechatronics applications. Acta Polytech. Hung. 2006, 3, 61–76. [Google Scholar]
- Chen, T.; Babanin, A.; Muhammad, A.; Chapron, B.; Chen, C. Modified evolved bat algorithm of fuzzy optimal control for complex nonlinear systems. Rom. J. Inf. Sci. Technol. 2020, 23, 28–40. [Google Scholar]
- Zamfirache, I.A.; Precup, R.E.; Roman, R.C.; Petriu, E.M. Policy iteration reinforcement learning-based control using a grey wolf optimizer algorithm. Inf. Sci. 2022, 585, 162–175. [Google Scholar] [CrossRef]
- Huang, C.; Naghdy, F.; Du, H. Fault tolerant sliding mode predictive control for uncertain steer-by-wire system. IEEE Trans. Cybern. 2017, 49, 261–272. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, H.; Li, A.; Ma, S. A New Single Point Preview-Based Human-Like Driver Model on Urban Curved Roads. IEEE Access 2020, 8, 107452–107464. [Google Scholar] [CrossRef]
- Hang, P.; Xia, X.; Chen, G.; Chen, X. Active safety control of automated electric vehicles at driving limits: A tube-based MPC approach. IEEE Trans. Transp. Electrif. 2022, 8, 1338–1349. [Google Scholar] [CrossRef]
- Huang, C.; Naghdy, F.; Du, H. Sliding mode predictive tracking control for uncertain steer-by-wire system. Control. Eng. Pract. 2019, 85, 194–205. [Google Scholar] [CrossRef]
- Xu, Q. Digital integral terminal sliding mode predictive control of piezoelectric-driven motion system. IEEE Trans. Ind. Electron. 2015, 63, 3976–3984. [Google Scholar] [CrossRef]
- Bartoszewicz, A. Discrete-time quasi-sliding-mode control strategies. IEEE Trans. Ind. Electron. 1998, 45, 633–637. [Google Scholar] [CrossRef]
- Yue, M.; Yang, L.; Sun, X.M.; Xia, W. Stability control for FWID-EVs with supervision mechanism in critical cornering situations. IEEE Trans. Veh. Technol. 2018, 67, 10387–10397. [Google Scholar] [CrossRef]
- Ataei, M.; Khajepour, A.; Jeon, S. Model Predictive Control for integrated lateral stability, traction/braking control, and rollover prevention of electric vehicles. Veh. Syst. Dyn. 2020, 58, 49–73. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Value |
---|---|---|---|
Vehicle mass | m | kg | 370 |
Vehicle sprung mass | ms | kg | 290 |
Yaw inertia moment | Iz | kg·m2 | 217 |
Roll inertia moment | Ix | kg·m2 | 236 |
The product of inertia | Ixz | kg·m2 | 152 |
Front wheel base | lf | mm | 808 |
Rear wheel base | lr | mm | 726 |
Wheelbase | l | mm | 1534 |
Height of sprung mass | hs | mm | 430 |
Track | B | mm | 970 |
Width | Bv | mm | 1150 |
Roll stiffness of vehicle suspension | N/rad | 75,540 | |
Roll damping of vehicle suspension | N/rad·s | 6768 | |
Front tire cornering stiffness | kf | N/rad | 13,007 |
Rear tire cornering stiffness | kr | N/rad | 14,503 |
Parameter | Value | Parameter | Value |
---|---|---|---|
(m) | 0.5 | 10 | |
2 | |||
(s) | 0.001 |
Parameter | Driver 1 | Driver 2 |
---|---|---|
0.24 | 0.14 | |
0.83 | 1.02 | |
0.62 | 0.84 | |
0.22 | 0.24 |
Control Mode | Lateral Offset (m) | Sideslip Angle Error (deg) | Yaw Rate Error (rad/s) | Roll Angle Error (deg) |
---|---|---|---|---|
Driver 1 | 0.5217 | 20.7762 | 1.4848 | 7.3549 |
Driver 1 + ARS | 0.0049 (↓) | 0.1878 (↓) | 0.0269 (↓) | 0.3501 (↓) |
Driver 2 | 0.1514 | 7.3190 | 0.9739 | 5.0298 |
Driver 2 + ARS | 0.0027 (↓) | 0.0940 (↓) | 0.0105 (↓) | 0.2572 (↓) |
Control Mode | Lateral Offset (m) | Sideslip Angle Error (deg) | Yaw Rate Error (rad/s) | Roll Angle Error (deg) |
---|---|---|---|---|
Driver 1 | 1.4129 | 46.7191 | 2.1428 | 7.2451 |
Driver 1 + ARS1 | 0.0284 (↓) | 2.4067 (↓) | 0.2234 (↓) | 1.7615 (↓) |
Driver 1 + ARS2 | 0.0174 (↓↓) | 1.5475 (↓↓) | 0.0504 (↓↓) | 0.4449 (↓↓) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, P.; Chen, X. Towards Active Safety Driving: Controller Design of an Active Rear Steering System for Intelligent Vehicles. Machines 2022, 10, 544. https://doi.org/10.3390/machines10070544
Hang P, Chen X. Towards Active Safety Driving: Controller Design of an Active Rear Steering System for Intelligent Vehicles. Machines. 2022; 10(7):544. https://doi.org/10.3390/machines10070544
Chicago/Turabian StyleHang, Peng, and Xinbo Chen. 2022. "Towards Active Safety Driving: Controller Design of an Active Rear Steering System for Intelligent Vehicles" Machines 10, no. 7: 544. https://doi.org/10.3390/machines10070544
APA StyleHang, P., & Chen, X. (2022). Towards Active Safety Driving: Controller Design of an Active Rear Steering System for Intelligent Vehicles. Machines, 10(7), 544. https://doi.org/10.3390/machines10070544