Topology Optimization of Geometrically Nonlinear Structures Based on a Self-Adaptive Material Interpolation Scheme
Abstract
:1. Introduction
2. Topology Optimization Formulation
3. Self-Adaptive Material Interpolation Scheme
4. Finite Element Analysis
4.1. Hyperelastic Material Model
4.2. Finite Element Formulation
5. Sensitivity Analysis
6. Numerical Examples
6.1. Topology Optimization of a Cantilever Structure
6.2. Topology Optimization of a Double Clamped Structure
6.3. Topology Optimization of a Displacement Inverter
6.4. Comparison
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Initial Value of | Final Value of | Displacement at Loading Point (m) | Compliance () | Displacement by Element Removal (m) | Relative Error | |
---|---|---|---|---|---|---|
0.2 | 0.02 | −52.70 | 1.054 | −68.33 | 22.9% | |
0.3 | 0.02 | −56.14 | 1.123 | −55.29 | 1.46% | |
0.4 | 0.02 | −56.02 | 1.120 | −55.02 | 1.82% | |
0.5 | 0.02 | −56.52 | 1.131 | −55.77 | 1.36% | |
0.6 | 0.02 | −55.95 | 1.119 | −55.22 | 1.32% |
References
- Bendsøe, M.P.; Kikuchi, N. Generating Optimal Topologies in Structural Design Using a Homogenization Method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Sigmund, O. A 99 Line Topology Optimization Code Written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Allaire, G.; Jouve, F.; Toader, A.M. Structural Optimization Using Sensitivity Analysis and a Level-Set Method. J. Comput. Phys. 2004, 194, 363–393. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhong, W. Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework. J. Appl. Mech. 2014, 81, 081009. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, W.; Zhou, J.; Li, D.; Guo, X. Structural Topology Optimization Through Explicit Boundary Evolution. J. Appl. Mech. 2017, 84, 011011. [Google Scholar] [CrossRef]
- Xie, Y.M.; Steven, G.P. A Simple Evolutionary Procedure for Structural Optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Querin, O.; Steven, G.; Xie, Y. Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm. Eng. Comput. 1998, 15, 1031–1048. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology Optimization Approaches: A Comparative Review. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Xia, L.; Xia, Q.; Huang, X.; Xie, Y.M. Bi-Directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review. Arch. Comput. Methods Eng. 2018, 25, 437–478. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, X.; Zhang, H.; Liang, J.; Zang, H.; Li, H.; Wang, R. Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review. Mech. Mach. Theory 2020, 143, 103622. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimization of Structural Topology, Shape, and Material; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar] [CrossRef]
- Jog, C. Distributed-Parameter Optimization and Topology Design for Non-Linear Thermoelasticity. Comput. Methods Appl. Mech. Eng. 1996, 132, 117–134. [Google Scholar] [CrossRef]
- Bruns, T.; Tortorelli, D. Topology Optimization of Geometrically Nonlinear Structures and Compliant Mechanisms. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA, 2–4 September 1998. [Google Scholar] [CrossRef]
- Buhl, T.; Pedersen, C.; Sigmund, O. Stiffness Design of Geometrically Nonlinear Structures Using Topology Optimization. Struct. Multidiscip. Optim. 2000, 19, 93–104. [Google Scholar] [CrossRef]
- Bruns, T.E.; Tortorelli, D.A. Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms. Comput. Methods Appl. Mech. Eng. 2001, 190, 3443–3459. [Google Scholar] [CrossRef]
- Gea, H.C.; Luo, J. Topology Optimization of Structures with Geometrical Nonlinearities. Comput. Struct. 2001, 79, 1977–1985. [Google Scholar] [CrossRef]
- Kwak, J.; Cho, S. Topological Shape Optimization of Geometrically Nonlinear Structures Using Level Set Method. Comput. Struct. 2005, 83, 2257–2268. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Bidirectional Evolutionary Topology Optimization for Structures with Geometrical and Material Nonlinearities. AIAA J. 2007, 45, 308–313. [Google Scholar] [CrossRef]
- Xue, R.; Liu, C.; Zhang, W.; Zhu, Y.; Tang, S.; Du, Z.; Guo, X. Explicit Structural Topology Optimization under Finite Deformation via Moving Morphable Void (MMV) Approach. Comput. Methods Appl. Mech. Eng. 2019, 344, 798–818. [Google Scholar] [CrossRef]
- Yoely, Y.M.; Hanniel, I.; Amir, O. Structural Optimization with Explicit Geometric Constraints Using a B-spline Representation. Mech. Based Des. Struct. Mach. 2020, 50, 3966–3997. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Zhu, B. A 213-Line Topology Optimization Code for Geometrically Nonlinear Structures. Struct. Multidiscip. Optim. 2019, 59, 1863–1879. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, M.Y.; Kang, Z. Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique. Comput. Methods Appl. Mech. Eng. 2015, 286, 422–441. [Google Scholar] [CrossRef]
- Wang, F.; Lazarov, B.S.; Sigmund, O.; Jensen, J.S. Interpolation Scheme for Fictitious Domain Techniques and Topology Optimization of Finite Strain Elastic Problems. Comput. Methods Appl. Mech. Eng. 2014, 276, 453–472. [Google Scholar] [CrossRef]
- Bruns, T.E.; Tortorelli, D.A. An Element Removal and Reintroduction Strategy for the Topology Optimization of Structures and Compliant Mechanisms. Int. J. Numer. Methods Eng. 2003, 57, 1413–1430. [Google Scholar] [CrossRef]
- Yoon, G.H.; Kim, Y.Y. Element Connectivity Parameterization for Topology Optimization of Geometrically Nonlinear Structures. Int. J. Solids Struct. 2005, 42, 1983–2009. [Google Scholar] [CrossRef]
- Pedersen, C.; Buhl, T.; Sigmund, O. Topology Synthesis of Large-Displacement Compliant Mechanisms. Int. J. Numer. Methods Eng. 2001, 50, 2683–2705. [Google Scholar] [CrossRef]
- Sigmund, O. Design of Multiphysics Actuators Using Topology Optimization—Part I: One-material Structures. Comput. Methods Appl. Mech. Eng. 2001, 190, 6577–6604. [Google Scholar] [CrossRef]
- Martins, P.A.L.S.; Natal Jorge, R.M.; Ferreira, A.J.M. A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues. Strain 2006, 42, 135–147. [Google Scholar] [CrossRef]
- Bonet, J.; Wood, R.D. Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Holzapfel, G.A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering; Wiley: Chichester, UK; Weinheim, Germany, 2010. [Google Scholar]
- Benliang, Z.; Benliang, Z.; Zhang, X.m.; Li, H.; Liang, J.; Wang, R.; Li, H.; Nishiwaki, S. An 89-Line Code for Geometrically Nonlinear Topology Optimization Written in FreeFEM. Struct. Multidiscip. Optim. 2020, 63, 1015–1027. [Google Scholar] [CrossRef]
- Han, Y.; Xu, B.; Liu, Y. An Efficient 137-Line MATLAB Code for Geometrically Nonlinear Topology Optimization Using Bi-Directional Evolutionary Structural Optimization Method. Struct. Multidiscip. Optim. 2021, 63, 2571–2588. [Google Scholar] [CrossRef]
Input Force (N) | Initial Value of | Final Value of | Displacement at Loading Point (m) | Compliance (N m) | Displacement by Element Removal (m) | Relative Error |
---|---|---|---|---|---|---|
5 | 0.02 | −20.31 | 0.102 | −20.31 | 0.01% | |
10 | 0.02 | −35.98 | 0.360 | −35.87 | 0.31% | |
15 | 0.02 | −47.78 | 0.717 | −47.39 | 0.81% | |
20 | 0.02 | −55.95 | 1.119 | −55.22 | 1.32% |
With Proposed Method | Finite Element Analysis (s) | Optimization (s) | Total Time (s) | |
---|---|---|---|---|
Figure 6a | No | 5.99 | 1.52 | 7.51 |
Figure 6b | Yes | 5.98 | 1.85 | 7.83 |
Input Force (N) | Initial Value of | Final Value of | Displacement at Loading Point (m) | Compliance (N m) | Displacement by Element Removal (m) | Relative Error |
---|---|---|---|---|---|---|
1.5 | 0.03 | −1.141 | 0.102 | −1.144 | 0.27% | |
5 | 0.03 | −3.858 | 0.360 | −3.870 | 0.29% | |
12.5 | 0.03 | −8.452 | 0.717 | −8.472 | 0.24% | |
15 | 0.03 | −10.19 | 1.119 | −10.22 | 0.33% |
Input Force (N) | Output Displacement (m) | Output Displacement after Element Removal (m) | Relative Error |
---|---|---|---|
1 | −1.751 | −1.752 | 0.07% |
2.5 | −4.281 | −4.284 | 0.08% |
5 | −8.318 | −8.394 | 0.90% |
7.5 | −12.29 | −12.44 | 1.18% |
Method | Compliance () | Time (s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5N | 10 N | 15 N | 20 N | 25 N | 5 N | 10 N | 15 N | 20 N | 25 N | |
proposed method | 0.102 | 0.360 | 0.717 | 1.119 | 1.568 | 24.679 | 32.946 | 33.404 | 36.150 | 40.370 |
213-line Matlab code | 0.109 | 0.369 | 0.730 | 1.129 | 1.591 | 9.469 | 13.301 | 13.220 | 14.322 | 16.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Zhang, X.; Zhu, B.; Wang, R.; Cui, C.; Zhang, H. Topology Optimization of Geometrically Nonlinear Structures Based on a Self-Adaptive Material Interpolation Scheme. Machines 2023, 11, 1047. https://doi.org/10.3390/machines11121047
Liang J, Zhang X, Zhu B, Wang R, Cui C, Zhang H. Topology Optimization of Geometrically Nonlinear Structures Based on a Self-Adaptive Material Interpolation Scheme. Machines. 2023; 11(12):1047. https://doi.org/10.3390/machines11121047
Chicago/Turabian StyleLiang, Junwen, Xianmin Zhang, Benliang Zhu, Rixin Wang, Chaoyu Cui, and Hongchuan Zhang. 2023. "Topology Optimization of Geometrically Nonlinear Structures Based on a Self-Adaptive Material Interpolation Scheme" Machines 11, no. 12: 1047. https://doi.org/10.3390/machines11121047
APA StyleLiang, J., Zhang, X., Zhu, B., Wang, R., Cui, C., & Zhang, H. (2023). Topology Optimization of Geometrically Nonlinear Structures Based on a Self-Adaptive Material Interpolation Scheme. Machines, 11(12), 1047. https://doi.org/10.3390/machines11121047