Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures
Abstract
:1. Introduction
2. Experimental Work
3. Result and Discussion
3.1. Maximum Tensile Strength (MTS)
3.2. Weight
4. Optimization
5. Conclusions
- Mechanical properties of printed samples were significantly influenced by the width thickness parameter.
- Low layer thickness and high width thickness combo reduces tensile strength due to poor layer adhesion in width direction.
- Using 0.25 mm layer thickness and 1 mm width thickness requires less material but increases voids and lowers tensile strength.
- Sample 8: 0.15 mm layer thickness, 0.6 mm width thickness, MTS of 17.925 MPa.
- Sample 3: 0.2 mm layer thickness, 0.4 mm width thickness, MTS of 17.515 MPa, maximum load 1600 N. Sample 3 maintains good MTS with a reduced filament consumption of 8.87 g (10.078 MPa).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FFF | Fused filament fabrication |
DOE | Design of Experiment |
RSM | Response Surface Methodology |
PVA | Polyvinyl Alcohol |
ANOVA | Analysis of Variance |
ABS | Acrylonitrile Butadiene Styrene |
LT | Layer thickness |
WT | Width thickness |
UTM | Universal Testing Machine |
MTS | Maximum Tensile Strength |
References
- Nazir, A.; Gokcekaya, O.; Billah, K.M.M.; Ertugrul, O.; Jiang, J.; Sun, J.; Hussain, S. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D Printing of materials and cellular metamaterials. Mater. Des. 2023, 226, 111661. [Google Scholar] [CrossRef]
- Moradi, M.; Karami Moghadam, M.; Shamsborhan, M.; Bodaghi, M. The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites. J. Compos. Sci. 2020, 4, 17. [Google Scholar] [CrossRef]
- Ouassil, S.E.; El Magri, A.; Vanaei, H.R.; Vaudreuil, S. Investigating the effect of printing conditions and annealing on the porosity and tensile behavior of 3D-printed polyetherimide material in Z-direction. J. Appl. Polym. Sci. 2023, 140, e53353. [Google Scholar] [CrossRef]
- Al-Dulaijan, Y.A.; Alsulaimi, L.; Alotaibi, R.; Alboainain, A.; Akhtar, S.; Khan, S.Q.; Al-Ghamdi, M.; Gad, M.M. Effect of Printing Orientation and Postcuring Time on the Flexural Strength of 3D-Printed Resins. J. Prosthodont. 2023, 32, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kara, Y.; Kovács, N.K.; Nagy-György, P.; Boros, R.; Molnár, K. A novel method and printhead for 3D printing combined nano-/microfiber solid structures. Addit. Manuf. 2023, 61, 103315. [Google Scholar] [CrossRef]
- Meiabadi, M.S.; Moradi, M.; Karamimoghadam, M.; Ardabili, S.; Bodaghi, M.; Shokri, M.; Mosavi, A.H. Modeling the producibility of 3D printing in polylactic acid using artificial neural networks and fused filament fabrication. Polymers 2021, 13, 3219. [Google Scholar] [CrossRef]
- Tomal, W.; Kiliclar, H.C.; Fiedor, P.; Ortyl, J.; Yagci, Y. Visible light induced high resolution and swift 3D printing system by halogen atom transfer. Macromol. Rapid Commun. 2023, 44, 2200661. [Google Scholar] [CrossRef]
- An, Z.; Liu, Z.; Mo, H.; Hu, L.; Li, H.; Xu, D.; Chitrakar, B. Preparation of Pickering emulsion gel stabilized by tea residue protein/xanthan gum particles and its application in 3D printing. J. Food Eng. 2023, 343, 111378. [Google Scholar] [CrossRef]
- Dey, D.; Panda, B. An experimental study of thermal performance of 3D printed concrete slabs. Mater. Lett. 2023, 330, 133273. [Google Scholar] [CrossRef]
- Moradi, M.; Karami Moghadam, M.; Shamsborhan, M.; Bodaghi, M.; Falavandi, H. Post-processing of FDM 3D-printed polylactic acid parts by laser beam cutting. Polymers 2020, 12, 550. [Google Scholar] [CrossRef]
- Zhang, X.N.; Zheng, Q.; Wu, Z.L. Recent advances in 3D printing of tough hydrogels: A review. Compos. Part B Eng. 2022, 238, 109895. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, M. 3D printing geopolymers: A review. Cem. Concr. Compos. 2022, 128, 104455. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, T.; Zhao, S.; Joralmon, D.; Poit, Z.; Ahire, B.; Keshav, S.; Raje, A.R.; Blair, J.; Zhang, Z.; et al. Recent advancements and applications in 3D printing of functional optics. Addit. Manuf. 2022, 52, 102682. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Z.; Xu, M.; Wang, S.; Li, N.; Yang, J. A review of 3D printed porous ceramics. J. Eur. Ceram. Soc. 2022, 42, 3351–3373. [Google Scholar] [CrossRef]
- Shubham, P.; Sikidar, A.; Chand, T. The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling. Key Eng. Mater. 2016, 706, 63–67. [Google Scholar] [CrossRef]
- Mallakpour, S.; Tabesh, F.; Hussain, C.M. A new trend of using poly (vinyl alcohol) in 3D and 4D printing technologies: Process and applications. Adv. Colloid Interface Sci. 2022, 301, 102605. [Google Scholar] [CrossRef]
- Angjellari, M.; Tamburri, E.; Montaina, L.; Natali, M.; Passeri, D.; Rossi, M.; Terranova, M.L. Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing. Mater. Des. 2017, 119, 12–21. [Google Scholar] [CrossRef]
- Dwiyati, S.T.; Kholil, A.; Riyadi, R.; Putra, S.E. Influence of layer thickness and 3D printing direction on tensile properties of ABS material. J. Phys. Conf. Ser. 2019, 1402, 066014. [Google Scholar] [CrossRef]
- Rajpurohit, S.R.; Dave, H.K. Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study. Int. J. Mater. Metall. Eng. 2018, 22, 6–11. [Google Scholar]
- Quan, Z.; Suhr, J.; Yu, J.; Qin, X.; Cotton, C.; Mirotznik, M.; Chou, T.W. Printing direction dependence of mechanical behavior of additively manufactured 3D preforms and composites. Compos. Struct. 2018, 184, 917–923. [Google Scholar] [CrossRef]
- Pradeep, P.V.; Paul, L. Review on novel biomaterials and innovative 3D printing techniques in biomedical applications. Mater. Today Proc. 2022, 58, 96–103. [Google Scholar] [CrossRef]
- Stammen, J.A.; Williams, S.; Ku, D.N.; Guldberg, R.E. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 2001, 22, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Saxena, A. A comprehensive study on 3D printing technology. MIT Int. J. Mech. Eng. 2016, 6, 63–69. [Google Scholar]
- Hema, M.; Selvasekerapandian, S.; Hirankumar, G.; Sakunthala, A.; Arunkumar, D.; Nithya, H. Structural and thermal studies of PVA: NH4I. J. Phys. Chem. Solids 2009, 70, 1098–1103. [Google Scholar] [CrossRef]
- Markiz, N.; Horváth, E.; Ficzere, P. Influence of printing direction on 3D printed ABS specimens. Prod. Eng. Arch. 2020, 26, 127–130. [Google Scholar] [CrossRef]
- Noushini, A.; Samali, B.; Vessalas, K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr. Build. Mater. 2013, 49, 374–383. [Google Scholar] [CrossRef]
- Prabhakar, M.M.; Saravanan, A.K.; Lenin, A.H.; Mayandi, K.; Ramalingam, P.S. A short review on 3D printing methods, process parameters and materials. Mater. Today Proc. 2021, 45, 6108–6114. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Li, G.; Geng, S.; Li, Z.; Weng, Y.; Qian, K. Study on anisotropy of 3D printing PVA fiber reinforced concrete using destructive and non-destructive testing methods. Case Stud. Constr. Mater. 2022, 17, e01519. [Google Scholar] [CrossRef]
- Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol. Adv. 2019, 37, 109–131. [Google Scholar] [CrossRef]
- Struzziero, G.; Barbezat, M.; Skordos, A.A. Assessment of the benefits of 3D printing of advanced thermosetting composites using process simulation and numerical optimisation. Addit. Manuf. 2023, 63, 103417. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, G.; Zheng, X.; Ni, Y.; Liu, F.; Liu, Y.; Xu, L.R. Efficient characterization on the interlayer shear strengths of 3D printing polymers. J. Mater. Res. Technol. 2023, 22, 2768–2780. [Google Scholar] [CrossRef]
- Aki, D.; Ulag, S.; Unal, S.; Sengor, M.; Ekren, N.; Lin, C.C.; Yılmazer, H.; Ustundag, C.B.; Kalaskar, D.M.; Gunduz, O. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater. Des. 2020, 196, 109094. [Google Scholar] [CrossRef]
- Hua, W.; Shi, W.; Mitchell, K.; Raymond, L.; Coulter, R.; Zhao, D.; Jin, Y. 3D printing of biodegradable polymer vascular stents: A review. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Baniasadi, H.; Madani, Z.; Ajdary, R.; Rojas, O.J.; Seppälä, J. Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Mater. Sci. Eng. C 2021, 130, 112424. [Google Scholar] [CrossRef]
- Rovetta, R.; Pallavicini, A.; Ginestra, P.S. Bioprinting process optimization: Case study on PVA (Polyvinyl Alcohol) and Graphene Oxide biocompatible hydrogels. Procedia CIRP 2022, 110, 145–149. [Google Scholar] [CrossRef]
- Moradi, M.; Karamimoghadam, M.; Meiabadi, S.; Casalino, G.; Ghaleeh, M.; Baby, B.; Ganapathi, H.; Jose, J.; Abdulla, M.S.; Tallon, P.; et al. Mathematical modelling of fused deposition modeling (FDM) 3D printing of poly vinyl alcohol parts through statistical design of experiments approach. Mathematics 2023, 11, 3022. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Ghabezi, P.; Flanagan, T.; Finnegan, W.; Mitchell, S.; Harrison, N.M. Recovery of Particle Reinforced Composite 3D Printing Filament from Recycled Industrial Polypropylene and Glass Fibre Waste. Proc. World Congr. Mech. Chem. Mater. Eng. 2022, 177, 3–4. [Google Scholar]
- Ghabezi, P.; Flanagan, T.; Harrison, N. Short basalt fibre reinforced recycled polypropylene filaments for 3D printing. Mater. Lett. 2022, 326, 132942. [Google Scholar] [CrossRef]
- Yao, T.; Deng, Z.; Zhang, K.; Li, S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Compos. Part B Eng. 2019, 163, 393–402. [Google Scholar] [CrossRef]
Variable | Notation | Unit | −2 | −1 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
Layer thickness | LT | [mm] | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 |
Width thickness | WT | [mm] | 0.4 | 0.6 | 0.8 | 1 | 1.2 |
Formula | (C2H40) x |
---|---|
Melting Point | 200 °C |
Density | 1.19 g/cm3 |
Boiling Point | 228 °C |
Solubility in | Water |
EPA | DTXSID431930 |
Log P | 0.26 |
Experiment No. | Input Variables | Responses | ||
---|---|---|---|---|
LT [mm] | WT [mm] | MTS (MPA) | Weight (g) | |
1 | 0.2 | 1.2 | 8.892 | 8.34 |
2 | 0.25 | 0.6 | 13.878 | 9.26 |
3 | 0.2 | 0.4 | 17.515 | 9.40 |
4 | 0.2 | 0.8 | 12.708 | 9.58 |
5 | 0.2 | 0.8 | 14.175 | 9.68 |
6 | 0.1 | 0.8 | 13.431 | 9.46 |
7 | 0.3 | 0.8 | 14.507 | 9.47 |
8 | 0.15 | 0.6 | 17.925 | 9.68 |
9 | 0.15 | 1 | 10.458 | 8.83 |
10 | 0.2 | 0.8 | 14.587 | 9.40 |
11 | 0.25 | 1 | 4.417 | 7.95 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 2.930 × 105 | 2 | 1.465 × 105 | 13.39 | 0.0028 |
A-LT | 9437.48 | 1 | 9437.48 | 0.86 | 0.3802 |
B-WT | 2.835 × 105 | 1 | 2.835 × 105 | 25.91 | 0.0009 |
Residual | 87530.92 | 8 | 10941.36 | ||
Lack of Fit | 80375.07 | 6 | 13395.84 | 3.74 | 0.2258 |
Pure Error | 7155.85 | 2 | 3577.93 | ||
Cor Total | 3.805 × 105 | 10 |
Source | Sum of Squares | Df | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 1.250 × 105 | 3 | 41,653.09 | 5.12 | 0.0348 |
A-LT | 7185.70 | 1 | 7185.70 | 0.88 | 0.3787 |
B-WT | 85,196.52 | 1 | 85,196.52 | 10.47 | 0.0143 |
B2 | 32,577.04 | 1 | 32,577.04 | 4.00 | 0.0855 |
Residual | 56,966.61 | 7 | 8138.09 | ||
Lack of Fit | 53,971.72 | 5 | 10,794.34 | 7.21 | 0.1263 |
Pure Error | 2994.90 | 2 | 1497.45 | ||
Cor Total | 1.819 × 105 | 10 |
Name | Goal | Lower Limit | Upper Limit | Lower Weight | Upper Weight | Importance |
---|---|---|---|---|---|---|
A: LT | is in range | 0.1 | 0.3 | 1 | 1 | 3 |
B: WT | is in range | 0.4 | 1.2 | 1 | 1 | 3 |
MTS | maximize | 4.41779 | 17.925 | 1 | 1 | 3 |
Weight | minimize | 7.95 | 9.68 | 1 | 1 | 3 |
No. | LT | WT | Desirability | MTS (MPa) | Weight (g) | |
---|---|---|---|---|---|---|
#1 | 0.3 | 0.85 | 1 | Predicted | 13.540 | 9.15 |
Actual | 11.985 | 9.05 | ||||
Error % | 12.97 | 1.10 | ||||
#2 | 0.25 | 0.85 | 0.953 | Predicted | 11.603 | 8.58 |
Actual | 12.091 | 8.99 | ||||
Error % | 4.03 | 4.56 | ||||
#3 | 0.25 | 0.95 | 0.947 | Predicted | 10.815 | 9.07 |
Actual | 10.078 | 8.87 | ||||
Error % | 7.31 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, M.; Karamimoghadam, M.; Meiabadi, S.; Rasool, S.; Casalino, G.; Shamsborhan, M.; Sebastian, P.K.; Poulose, A.; Shaiju, A.; Rezayat, M. Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures. Machines 2023, 11, 844. https://doi.org/10.3390/machines11080844
Moradi M, Karamimoghadam M, Meiabadi S, Rasool S, Casalino G, Shamsborhan M, Sebastian PK, Poulose A, Shaiju A, Rezayat M. Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures. Machines. 2023; 11(8):844. https://doi.org/10.3390/machines11080844
Chicago/Turabian StyleMoradi, Mahmoud, Mojtaba Karamimoghadam, Saleh Meiabadi, Shafqat Rasool, Giuseppe Casalino, Mahmoud Shamsborhan, Pranav Kattungal Sebastian, Arun Poulose, Abijith Shaiju, and Mohammad Rezayat. 2023. "Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures" Machines 11, no. 8: 844. https://doi.org/10.3390/machines11080844
APA StyleMoradi, M., Karamimoghadam, M., Meiabadi, S., Rasool, S., Casalino, G., Shamsborhan, M., Sebastian, P. K., Poulose, A., Shaiju, A., & Rezayat, M. (2023). Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures. Machines, 11(8), 844. https://doi.org/10.3390/machines11080844