Manufacturability-Based Design Optimization for Directed Energy Deposition Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Topology Optimization
2.2. Orientation Optimization
2.3. Material Addition
2.4. Machine Code Generation
2.5. Case Study
3. Results
3.1. Topology Optimization Bounding Box and Constraints
3.2. Orientation Optimization
3.3. Material Addition
3.4. Slicing and Machine Code Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stavropoulos, P. Introduction. In Additive Manufacturing: Design, Processes and Applications; SpringerBriefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modelling approaches: A critical review. Int. J. Adv. Manuf. Technol. 2015, 83, 389–405. [Google Scholar] [CrossRef]
- Izdebska-Podsiadły, J. (Ed.) Chapter 3—Classification of 3D Printing Methods. In Plastics Design Library, Polymers for 3D Printing; William Andrew Publishing: Norwich, NY, USA, 2022; pp. 23–34. ISBN 9780128183113. [Google Scholar] [CrossRef]
- Ahn, D.G. Directed Energy Deposition (DED) Process: State of the Art. Int. J. Precis. Eng. Manuf.-Green Tech. 2021, 8, 703–742. [Google Scholar] [CrossRef]
- Grinde, S. Topology Optimization for Additive Manufacturing Using SIMP Method. Master’s Thesis, Montana Technological University, Butte, MT, USA, 2018. [Google Scholar]
- Bendsoe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1998, 71, 197–224. [Google Scholar] [CrossRef]
- MBendsoe, P.; Haber, R. The Michell layout problem as a low volume fraction limit of the homogenization method for topology design: An asymoptotic study. Struct. Optim. 1993, 6, 63–267. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Topology Optimization; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Rozvany, G.I.N. Structural Design via Optimality Criteria; Kluwer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Suzuki, K.; Kikuchi, N. A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 1991, 93, 291–381. [Google Scholar] [CrossRef]
- Allaire, G.; Kohn, R.V. Topology Optimization and Optimal Shape Design Using Homogenization. In Topology Design of Structures; Bendsoe, M.P., Soares, C.A.M., Eds.; NATO ASI Series, Series E; Kluwer: Dordrecht, The Netherlands, 1993; Volume 227, pp. 207–218. [Google Scholar] [CrossRef]
- Allaire, G. The Homogenization Method for Topology and Shape Optimization. In Topology Optimization in Structural Mechanics CISM; Rozvany, G.I.N., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 101–133. [Google Scholar] [CrossRef]
- Rozvany, G.I.N.; Zhou, M.; Birker, T. Generalized shape optimization without homogenization. Struct. Optim. 1992, 4, 250–252. [Google Scholar] [CrossRef]
- Bendsoe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Mjejnek, H.P. Some aspects of the genesis of structures. Struct. Optim. 1992, 5, 64–69. [Google Scholar] [CrossRef]
- Bendsoe, M.P.; Sigmund, O. Material interpolations in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654. [Google Scholar]
- Rozvany, G. The SIMP Method in Topology Optimization—Theoretical Background, Advantages and New Applications. In Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, USA, 6–8 September 2000. [Google Scholar] [CrossRef]
- YXie, M.; Steven, G.P. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar]
- Xie, Y.M.; Steven, G.P. Optimal design of multiple load case structures using an evolutionary procedure. Eng. Comput. 1994, 11, 295–302. [Google Scholar] [CrossRef]
- Chu, D.N.; Xie, Y.M.; Hira, A.; Steven, G.P. On various aspects of evolutionary structural optimization for problems with stiffness constraints. Finite Elem. Anal. Des. 1997, 24, 197–212. Available online: https://www.sciencedirect.com/science/article/pii/S0168874X96000492?via%3Dihub (accessed on 7 June 2023).
- Xie, Y.M.; Steven, G.P. Evolutionary structural optimization for dynamic problems. Comput. Struct. 1996, 58, 1067–1073. Available online: https://www.sciencedirect.com/science/article/pii/0045794995002359 (accessed on 7 June 2023). [CrossRef]
- Yang, X.Y.; Xie, Y.M.; Steven, G.P.; Querin, O.M. Bidirectional evolutionary method for stiffness optimization. AIAA J. 1999, 37, 1483–1488. [Google Scholar] [CrossRef]
- David, M.A. Design for Manufacturability; How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production; Routledge: Oxfordshire, UK, 2014; p. 486. Available online: https://www.design4manufacturability.com/books.htm (accessed on 7 June 2023).
- Bikas, H.; Lianos, A.K.; Stavropoulos, P. A design framework for additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 103, 3769–3783. [Google Scholar] [CrossRef]
- Zhang, Y.; Bernard, A.; Gupta, R.K.; Harik, R. Evaluating the design for Additive Manufacturing: A process planning perspective. Procedia CIRP 2014, 21, 144–150. [Google Scholar] [CrossRef]
- Booth, J.W.; Alperovich, J.; Chawla, P.; Ma, J.; Reid, T.N.; Ramani, K. The Design for Additive Manufacturing Worksheet. ASME. J. Mech. Des. 2017, 139, 100904. [Google Scholar] [CrossRef]
- Ghiasian, S.E.; Jaiswal, P.; Rai, R.; Lewis, K. From Conventional to Additive Manufacturing: Determining Component Fabrication Feasibility. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, QB, Canada, 26–29 August 2018; Volume 2A. [Google Scholar] [CrossRef]
- Lianos, A.; Koutsoukos, S.; Bikas, H.; Stavropoulos, P. Manufacturability Assessment and Design for AM. Procedia CIRP 2020, 91, 290–294. [Google Scholar] [CrossRef]
- Borgue, O.; Müller, J.; Leicht, A.; Panarotto, M.; Isaksson, O. Constraint Replacement-based design for additive manufacturing of satellite components: Ensuring design manufacturability through tailored test artefacts. Aerospace 2019, 6, 124. [Google Scholar] [CrossRef]
- Dinda, S. Designing a Mobile Application for Evaluating Manufacturability of Parts Using Additive Manufacturing. Master’s Thesis, The Pennsylvania State University, State College, PA, USA, 2017. Available online: https://etda.libraries.psu.edu/catalog/14468sjd5520 (accessed on 7 June 2023).
- Lianos, A.; Bikas, H.; Stavropoulos, P. A Shape Optimization Method for Part Design Derived from the Buildability Restrictions of the Directed Energy Deposition Additive Manufacturing Process. Designs 2020, 4, 19. Available online: https://www.mdpi.com/2411-9660/4/3/19 (accessed on 7 June 2023). [CrossRef]
- O’Hara, R.P.; Chand, A.; Vidiyala, S.; Arechavala, S.M.; Mitsouras, D.; Rudin, S.; Ionita, C.N. Advanced 3D Mesh Manipulation in Stereolithographic Files and Post-Print Processing for the Manufacturing of Patient-Specific Vascular Flow Phantoms. Proc. SPIE-Int. Soc. Opt. Eng. 2016, 9789, 978909. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zou, J.; Zheng, J.; Yang, S. A novel two-phase evolutionary algorithm for solving constrained multi-objective optimization problems. Swarm Evol. Comput. 2022, 75, 101166. [Google Scholar] [CrossRef]
- Niu, Y.; Shao, J.; Xiao, J.; Song, W.; Cao, Z. Multi-objective evolutionary algorithm based on RBF network for solving the stochastic vehicle routing problem. Inf. Sci. 2022, 609, 387–410. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Hu, Q.; Liu, D.; Lammer, H. Research and implementation of a non-supporting 3D printing method based on 5-axis dynamic slice algorithm. Robot. Comput. -Integr. Manuf. 2019, 57, 496–505. [Google Scholar] [CrossRef]
- Brown, A.C.; de Beer, D. Development of a Stereolithography (STL) Slicing and G-Code Generation Algorithm for an Entry Level 3-D Printer; 2013 Africon, Pointe aux Piments, Mauritius; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Kwame, S.; Dzegblor, N.K.; Lodonu, J.C. The use of computer-based tutorial to augment teaching and learning of computer software application: A case study of Rhinoceros 3d software. Int. J. Innov. Res. Dev. 2015, 4, 209–216. Available online: http://www.internationaljournalcorner.com/index.php/ijird_ojs/article/view/135425 (accessed on 7 June 2023).
- Rhinoceros 3D Software. Available online: https://www.rhino3d.com/ (accessed on 9 June 2023).
- Grasshopper 3D Software. Available online: https://www.rhino3d.com/features/#grasshopper (accessed on 9 June 2023).
- Perini, K.; Chokhachian, A.; Dong, S.; Auer, T. Modeling and simulating urban outdoor comfort: Coupling Envi-met and TRNSYS by grasshopper. Energy Build. 2017, 152, 373–384. [Google Scholar] [CrossRef]
- Mesh Normals. Available online: https://adamsturge.github.io/Engine-Blog/mydoc_mesh_normals.html (accessed on 9 June 2023).
- van de Ven, E.; Maas, R.; Ayas, C.; Langelaar, M.; van Keulen, F. Continuous front propagation-based overhang control for topology optimization with additive manufacturing. Struct. Multidiscip. Optimization. 2018, 57, 2075–2091. [Google Scholar] [CrossRef]
- Galapagos Plug-in for Grasshopper 3D. Available online: http://wiki.bk.tudelft.nl/toi-pedia/Galapagos_Optimization (accessed on 9 June 2023).
- Dienemann, R.; Schumacher, A.; Fiebig, S. Topology Optimization Considering the Requirements of Deep-Drawn Sheet Metals. In Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization, Sydney, Australia, 7–12 June 2015. [Google Scholar]
- Meltio Stainless Steel 316L Material Datasheet. Available online: https://meltio3d.com/wp-content/uploads/2023/04/Meltio_Stainless_Steel_316L.pdf (accessed on 22 August 2023).
Parameter | Value |
---|---|
Layer height [mm] | 0.2 |
Infill [%] | 30 |
Nozzle diameter [mm] | 0.4 |
Shell number | 2 |
Bottom layers | 8 |
Top layers | 0 |
Print speed [mm/s] | 70 |
Travel speed [mm/s] | 130 |
Retraction speed [mm/s] | 30 |
Retractions distance [mm] | 3 |
Filament diameter [mm] | 1.75 |
Flow rate [%] | 100 |
Property | Meltio XY Properties | Meltio XZ Properties |
---|---|---|
Yield Strength [MPa] | 6 | 11 |
Ultimate Tensile Strength [MPa] | 16 | 28 |
Elongation [%] | 2 | 4 |
Conventional Workflow | Proposed Workflow | |||
---|---|---|---|---|
Parameter | Step 1: Topology Optimization | Step 2: Orientation Optimization | Step 3: Material Addition | |
Mesh volume [mm3] | 2667 | 507 | 507 | 723 |
Support volume [mm3] | 2723 | 654 | 103 | 40 |
Total volume [mm3] | 5390 | 1161 | 610 | 763 |
Build time [min] | 13 | 6 | 10 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikas, H.; Terzakis, M.A.; Stavropoulos, P. Manufacturability-Based Design Optimization for Directed Energy Deposition Processes. Machines 2023, 11, 879. https://doi.org/10.3390/machines11090879
Bikas H, Terzakis MA, Stavropoulos P. Manufacturability-Based Design Optimization for Directed Energy Deposition Processes. Machines. 2023; 11(9):879. https://doi.org/10.3390/machines11090879
Chicago/Turabian StyleBikas, Harry, Michail Aggelos Terzakis, and Panagiotis Stavropoulos. 2023. "Manufacturability-Based Design Optimization for Directed Energy Deposition Processes" Machines 11, no. 9: 879. https://doi.org/10.3390/machines11090879
APA StyleBikas, H., Terzakis, M. A., & Stavropoulos, P. (2023). Manufacturability-Based Design Optimization for Directed Energy Deposition Processes. Machines, 11(9), 879. https://doi.org/10.3390/machines11090879