Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Industry 4.0 Approaches
2.2. Digital Twin Concept
3. Results of Digital Twin Design and Dynamic System Simulation
3.1. Process Description: Case Study
- The automatic supply of cylindrical semi-finished products from a warehouse;
- Transporting the parts on the conveyor to the drilling station;
- The transfer of the piece to the machining station through drilling;
- The drilling processing of the semi-finished product, with the possibility of setting the drilling depth and advance speed on the computer;
- Transporting the drilled piece to the next station, for processing by turning;
- The turning of cylindrical semi-finished products;
- Processing by rectification and final control;
- The transportation of processed parts, with a conveyor, to the product warehouse;
- The final control and selection of good parts for delivery and their storage in the warehouse of finished products;
- The identification and evacuation of scrap parts, which do not fall within the allowed tolerances, using the SCADA (Supervisory Control and Data Acquisition) software application, CX–Supervisor (Release 3.1 by OMRON 2010);
- Controlling the process through a programmable logic controller (PLC) and process monitoring and control software;
- The actuation of equipment and devices in the system by using nine pneumatic actuation cylinders, the existence of a regulator filter and electrovalves, a stepper motor and related driver, three presence sensors (optical or inductive), and laser sensors.
3.2. Digital Twin Design for an FMS: Case Study
Digital Twin Configuration Methodology for a Flexible Manufacturing System
- Step 1—Importing the 3D model of the system. The CAD (3D) model of the automated system was taken in STEP format and imported into Process Simulate using the “Convert and Insert CAD Files” function.In this way, the original model was converted to JT format, the native format recognized by Process Simulate.
- Step 2—Defining devices and equipment based on the existing physical system model. After the conversion of the 3D model was completed, the stage followed where each piece of equipment was isolated into an individual device. In Process Simulate, new resources can be created to represent each piece of equipment as realistically as possible.
- Step 3—Kinematic realization for the defined equipment. Each piece of equipment defined in Process Simulate can have one or more kinematic torques defined. They make the connections between the moving elements, such as pneumatic cylinders for actuating the equipment and the devices integrated into the experimental physical system. Thus, the device can move in such a way as to reproduce the movements of real devices. The fixed and moving parts of the device were defined, as well as the types of motion: rotation, translation, or combined motion (Kinematics Editor Command). The parameters considered in the definition of these kinematic couples are the type of movement, the axis or vector of movement, the minimum and maximum limits of the movement, the velocity, and the acceleration (Joint Type Command). Except for the movement type, all mentioned parameters can be changed at any time. Predefined positions of the device (Pose Editor command) where the kinematic torque has a certain value have been set. Here, the name and value of the kinematic couple can be assigned for the respective position. Defining these elements is very important, as they will be used in all aspects of the project. For example, in Figure 6, the values set for a pneumatic actuation cylinder (pneumatic cylinder 7) from the experimental FMS system are presented in detail. Similarly, the positions for each kinematic couple of the system were defined.
- Step 4—Defining the sensors. In Process Simulate, sensors are resources capable of detecting the presence of an object or a specific property of that object. The most commonly used types are proximity sensors and photoelectric sensors. Property sensors are used to detect certain characteristics assigned to the object, such as weight, color, type, barcode, etc. A real-life analogy would be RFID (Radio Frequency Identification) systems, where a special tag can be written or read by a device.
- Step 5—Conveyor belt definition. To create a conveyor belt in Process Simulate, the 3D resource was selected, and the “Define Conveyer” command was used. The conveyor belts of the system were defined, specifically a curve that dictates the direction and orientation of the transport, with the latter characteristic being reversible. The conveyor belt’s characteristics were set as follows: tolerance refers to the precision required for placing objects on its surface, and feed speed is represented in units of [mm/s] and can be adjusted at any time depending on the process.
3.3. DT Simulation Results
- Everyone involved in the project can have a visual representation of the production line. This results in a better understanding of the process.
- The simulation allowed for the identification of collisions in the system between the devices or equipment that compose it and the possibility of correcting them.
- Several process variants were simulated to choose the optimal solution.
3.4. Optimization Solutions
3.4.1. Correcting the Collisions Identified in the System
3.4.2. Configuring the Virtual Commissioning Environment
3.4.3. Integration of Collaborative Robotics
3.4.4. Human–Machine Interface (HMI)
- Cycle time validation for human operations;
- The testing of safety equipment: light barriers, laser scanners, emergency buttons, etc.;
- Carrying out studies on ergonomics, accessibility to equipment, and tools.
3.4.5. Implementation of Automated Guided Vehicle Systems (AGVS)
4. Conclusions
- Proposing solutions to optimize the process through digitization using Industry 4.0-specific technologies with implications for production and management;
- The implementation of collaborative robots, simulation studies on interactions with the human operator (HMI—human–machine interface), and ergonomic studies;
- The implementation of the AGVS (automated guided vehicle system) concept.
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, J.; Liua, Y.; Grosvenor, R. A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP 2016, 52, 173–178. [Google Scholar] [CrossRef]
- Chiarello, F.; Trivelli, L.; Bonaccorsi, A.; Fantoni, G. Extracting and mapping industry 4.0 technologies using Wikipedia. Comput. Ind. 2018, 100, 244–257. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- Pereira, A.G.; Lima, T.M.; Charrua-Santos, F. Society 5.0 as a result of the technological evolution: Historical approach. Adv. Intell. Syst. Comput. 2020, 1018, 700–705. [Google Scholar]
- Romero, D.; Stahre, J. Towards the resilient operator 5.0: The future of work in smart resilient manufacturing systems. Procedia CIRP 2021, 104, 1089–1094. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, H.; Chand, S.; Xia, W.; Liu, Z.; Xu, X.; Wang, L.; Qin, Z.; Bao, J. Outlook on human-centric manufacturing towards Industry 5.0. J. Manuf. Syst. 2022, 62, 612–627. [Google Scholar] [CrossRef]
- Almusaed, A.; Yitmen, I.; Almssad, A. Reviewing and Integrating AEC Practices into Industry 6.0: Strategies for Smart and Sustainable Future-Built Environments. Sustainability 2023, 15, 13464. [Google Scholar] [CrossRef]
- Brettel, M.; Klein, K.; Friederichsen, N. The relevance of manufacturing flexibility in the context of Industrie 4.0. In Proceedings of the 48th CIRP Conference on Manufacturing Systems, Ljubljana, Slovenia, 12–14 June 2016; Elsevier: Amsterdam, The Netherlands, 2015; Volume 41, pp. 105–110. [Google Scholar] [CrossRef]
- Schuh, G.; Potente, T.; Wesch-Potente, C.; Weber, A.R.; Prote, J. Collaboration Mechanisms to increase Productivity in the Context of Industrie 4.0. In Proceedings of the 2nd CIRP Robust Manufacturing Conference, Bremen, Germany, 7–9 July 2014; Volume 19, pp. 51–56. [Google Scholar]
- Pereira, J.A.P.; Campilho, R.D.S.G.; Silva, F.J.G.; Sánchez-Arce, I.J. Robotized cell design for part assembly in the automotive industry. Proc. Inst. Mech. Eng. Part C 2022, 236, 8807–8822. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Silva, F.J.G.d.; Campilho, R.D.S.G.; Pinto, A.G.; Ferreira, L.P.; Martins, N. Developing a novel fully automated concept to produce bowden cables for the automotive industry. Machines 2022, 10, 290. [Google Scholar] [CrossRef]
- Mishra, R.; Pundir, A.K.; Ganapathy, L. Manufacturing Flexibility Research: A Review of Literature and Agenda for Future Research. Glob. J. Flex. Syst. Manag. 2014, 15, 101–112. [Google Scholar] [CrossRef]
- Florescu, A.; Barabas, S.A. Modeling and Simulation of a Flexible Manufacturing System—A Basic Component of Industry 4.0. Appl. Sci. 2020, 10, 8300. [Google Scholar] [CrossRef]
- Arnold, C.; Kiel, D.; Voigt, K.I. How the Industrial Internet of Things Changes Business Models in Different Manufacturing Industries. Int. J. Innov. Manag. 2016, 20, 1640015. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Zheng, T.; Ardolino, M.; Bacchetti, A.; Perona, M.; Zanardini, M. The impacts of Industry 4.0: A descriptive survey in the Italian manufacturing sector. J. Manuf. Technol. Manag. 2020, 31, 1085–1115. [Google Scholar] [CrossRef]
- Veile, J.W.; Kiel, D.; Muller, J.M.; Voigt, K.-I. Lessons learned from Industry 4.0 implementation in the German manufacturing industry. J. Manuf. Technol. Manag. 2020, 31, 977–997. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Wang, K.J.; Lee, Y.H.; Angelica, S. Digital twin design for real-time monitoring—A case study of die cutting machine. Int. J. Prod. Res. 2021, 59, 6471–6485. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Z.; Min, Q. A digital twin-enabled value stream mapping approach for production process reengineering in SMEs. Int. J. Comput. Integr. Manuf. 2021, 34, 764–782. [Google Scholar] [CrossRef]
- Psarommatis, F.; May, G. A literature review and design methodology for digital twins in the era of zero defect manufacturing. Int. J. Prod. Res. 2022, 61, 5723–5743. [Google Scholar] [CrossRef]
- Kusiak, A. Predictive models in digital manufacturing: Research, applications, and future outlook. Int. J. Prod. Res. 2022, 61, 6052–6062. [Google Scholar] [CrossRef]
- Heindl, W.; Stary, C. Structured Development of Digital Twins—A Cross-Domain Analysis towards a Unified Approach. Processes 2022, 10, 1490. [Google Scholar] [CrossRef]
- Perno, M.; Hvam, L. Developing a Framework for Scoping Digital Twins in the Process Manufacturing Industry. In SPS2020; Säfsten, K., Elgh, F., Eds.; IOS Press: Amsterdam, The Netherlands, 2020; ISBN 9781643681467. [Google Scholar]
- Riedelsheimer, T.; Gogineni, S.; Stark, R. Methodology to develop Digital Twins for energy efficient customizable IoT-Products. Procedia CIRP 2021, 98, 258–263. [Google Scholar] [CrossRef]
- Agnusdei, G.P.; Elia, V.; Gnoni, M.G. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Appl. Sci. 2021, 11, 2767. [Google Scholar] [CrossRef]
- Fett, M.; Wilking, F.; Goetz, S.; Kirchner, E.; Wartzack, S. A Literature Review on the Development and Creation of Digital Twins, Cyber-Physical Systems, and Product-Service Systems. Sensors 2023, 23, 9786. [Google Scholar] [CrossRef]
- Singh, M.; Srivastava, R.; Fuenmayor, E.; Kuts, V.; Qiao, Y.; Murray, N.; Devine, D. Applications of Digital Twin across Industries: A Review. Appl. Sci. 2022, 12, 5727. [Google Scholar] [CrossRef]
- Kousi, N.; Gkournelos, C.; Aivaliotis, S.; Lotsaris, K.; Bavelos, A.C.; Baris, P.; Michalos, G.; Makris, S. Digital Twin for Designing and Reconfiguring Human–Robot Collaborative Assembly Lines. Appl. Sci. 2021, 11, 4620. [Google Scholar] [CrossRef]
- Zohdi, T.I. A digital twin framework for machine learning optimization of aerial firefighting and pilot safety. Comput. Methods Appl. Mech. Eng. 2021, 373, 113446. [Google Scholar] [CrossRef]
- Zandi, K.; Ransom, E.H.; Topac, T.; Chen, R.; Beniwal, S.; Blomfors, M.; Shu, J.; Chang, F.-K. A Framework for Digital Twin of Civil Infrastructure—Challenges & Opportunities. Struct. Health Monit. 2019. [Google Scholar] [CrossRef]
- Li, W.; Rentemeister, M.; Badeda, J.; Jöst, D.; Schulte, D.; Sauer, D.U. Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation. J. Energy Storage 2020, 30, 101557. [Google Scholar] [CrossRef]
- Delollite Development LLC. 2021 Manufacturing Industry Outlook. Available online: https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/manufacturing-industry-outlook.html (accessed on 18 January 2022).
- Ulrich, S. Industrie 4.0—Beherrschung der Industriellen Komplexität mit SysLM; Springer-Vieweg: Berlin, Germany, 2013. [Google Scholar]
- Bauernhansel, T.; ten Hompel, M.; Vogel-Heuser, B. Industrie 4.0 in Produktion, Automatisierung, und Logistik; Springer-Vieweg: Berlin, Germany, 2014. [Google Scholar]
- Berger, R. Industry 4.0 The New Industrial Revolution How Europe Will Succeed; Roland Berger Strategy Consultants GmbH: München, Germany, 2014. [Google Scholar]
- Burmeister, C.; Lüttgens, D.; Piller, F.T. Business Model Innovation for Industrie 4.0: Why the Industrial Internet Mandates a New Perspective on Innovation. Die Unternehm. 2016, 70, 124–152. [Google Scholar] [CrossRef]
- Dombrowski, U.; Richter, T. The Lean Production System 4.00 Framework—Enhancing Lean Methods by Industrie 4.0. In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0, Proceedings of the IFIP International Federation for Information Processing 2018, Seoul, Republic of Korea, 26–30 August 2018; Springer International Publishing: Basel, Switzerland, 2018; Volume 536, pp. 473–481. ISBN 978-3-319-99706-3. [Google Scholar]
- Sony, M. Industry 4.0 and lean management: A proposed integration model and research propositions. Prod. Manuf. Res. 2018, 6, 416–432. [Google Scholar] [CrossRef]
- Schumacher, A.; Nemeth, T.; Sihn, W. Roadmapping towards industrial digitalization based on an Industry 4.0 maturity model for manufacturing enterprises. Procedia CIRP 2019, 79, 409–414. [Google Scholar] [CrossRef]
- Santos, R.C.; Martinho, J.L. An Industry 4.0 maturity model proposal. J. Manuf. Technol. Manag. 2020, 31, 1023–1043. [Google Scholar] [CrossRef]
- Amaral, A. A Framework for Assessing Manufacturing SMEs Industry 4.0 Maturity. Appl. Sci. 2021, 11, 6127. [Google Scholar] [CrossRef]
- Zoubek, M.; Poor, P.; Broum, T.; Basl, J.; Simon, M. Industry 4.0 Maturity Model Assessing Environmental Attributes of Manufacturing Company. Appl. Sci. 2021, 11, 5151. [Google Scholar] [CrossRef]
- Ryalat, M.; ElMoaqet, H.; AlFaouri, M. Design of a Smart Factory Based on Cyber-Physical Systems and Internet of Things towards Industry 4.0. Appl. Sci. 2023, 13, 2156. [Google Scholar] [CrossRef]
- Gupta, B.B.; Tewari, A.; Cvitić, I.; Peraković, D.; Chang, X. Artificial intelligence empowered emails classifier for Internet of Things based systems in Industry 4. Wirel. Netw. 2021, 28, 493–503. [Google Scholar] [CrossRef]
- Culot, G.; Nassimbeni, G.; Orzes, G.; Sartor, M. Behind the definition of Industry 4.0: Analysis and open questions. Int. J. Prod. Econ. 2020, 226, 107617. [Google Scholar] [CrossRef]
- Pei, E.; Loh, G.H.; Nam, S. Concepts and terminologies in 4D printing. Appl. Sci. 2020, 10, 4443. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Vrchota, J.; Volek, T.; Novotná, M. Factors Introducing Industry 4.0 to SMES. Soc. Sci. 2019, 8, 130. [Google Scholar] [CrossRef]
- Gajdzik, B.; Grabowska, S.; Saniuk, S. A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules. Energies 2021, 14, 940. [Google Scholar] [CrossRef]
- Moeuf, A.; Lamouri, S.; Pellerin, R.; Tamayo-Giraldo, S.; Tobon-Valencia, E.; Eburdy, R. Identification of Critical Success Factors, Risks and Opportunities of Industry 4.0 in SMEs. Int. J. Prod. Res. 2020, 58, 1384–1400. [Google Scholar] [CrossRef]
- Lodgaard, E.; Torvatn, H.; Sørumsbrenden, J. Future competence at shopfloor in the era of Industry 4.0—A case study in Norwegian industry. Procedia CIRP 2022, 107, 961–965. [Google Scholar] [CrossRef]
- Grufman, N.; Lyons, S.; Sneiders, E. Exploring Readiness of SMEs for Industry 4.0. Complex Syst. Inform. Model. Q. CSIMQ 2020, 25, 54–86. [Google Scholar] [CrossRef]
- Vinodh, S.; Antony, J.; Agrawal, R.; Douglas, J.A. Integration of continuous improvement strategies with Industry 4.0: A systematic review and agenda for further research. TQM J. 2020, 33, 441–472. [Google Scholar] [CrossRef]
- Schönfuß, B.; McFarlane, D.; Hawkridge, G.; Salter, L.; Athanassopoulou, N.; de Silva, L. A catalogue of digital solution areas for prioritising the needs of manufacturing SMEs. Comput. Ind. 2021, 133, 103532. [Google Scholar] [CrossRef]
- De Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When titans meet—Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Chang. 2018, 132, 18–25. [Google Scholar] [CrossRef]
- Fritzsche, K.; Niehoff, S.; Beier, G. Industry 4.0 and Climate Change—Exploring the Science-Policy Gap. Sustainability 2018, 10, 4511. [Google Scholar] [CrossRef]
- Leong, W.D.; Teng, S.Y.; How, B.S.; Ngan, S.L.; Rahman, A.A.; Tan, C.P.; Ponnambalam, S.; Lam, H.L. Enhancing the adaptability: Lean and green strategy towards the Industry Revolution 4.0. J. Clean. Prod. 2020, 273, 122870. [Google Scholar] [CrossRef]
- Sharma, M.; Luthra, S.; Joshi, S.; Kumar, A.; Jain, A. Green logistics driven circular practices adoption in industry 4.0 Era: A moderating effect of institution pressure and supply chain flexibility. J. Clean. Prod. 2023, 383, 135284. [Google Scholar] [CrossRef]
- Adel, A. Future of Industry 5.0 in society: Human-centric solutions, challenges and prospective research areas. J. Cloud Comput. 2022, 11, 40. [Google Scholar] [CrossRef]
- Aslam, F.; Aimin, W.; Li, M.; Ur Rehman, K. Innovation in the era of IoT and industry 5.0: Absolute innovation management (AIM) framework. Information 2020, 11, 124. [Google Scholar] [CrossRef]
- Polonara, M.; Romagnoli, A.; Biancini, G.; Carbonari, L. Introduction of Collaborative Robotics in the Production of Automotive Parts: A Case Study. Machines 2024, 12, 196. [Google Scholar] [CrossRef]
- Borboni, A.; Reddy, K.V.V.; Elamvazuthi, I.; AL-Quraishi, M.S.; Natarajan, E.; Azhar Ali, S.S. The Expanding Role of Artificial Intelligence in Collaborative Robots for Industrial Applications: A Systematic Review of Recent Works. Machines 2023, 11, 111. [Google Scholar] [CrossRef]
- Li, C.; Zheng, P.; Yin, Y.; Pang, Y.M.; Huo, S. An AR-assisted deep reinforcement learning-based approach towards mutual-cognitive safe human-robot interaction. Robot. Comp. Integr. Manuf. 2023, 80, 102471. [Google Scholar] [CrossRef]
- Prassida, G.F.; Asfari, U. A conceptual model for the acceptance of collaborative robots in industry 5.0. Procedia Comp. Sci. 2022, 197, 61–67. [Google Scholar] [CrossRef]
- Kopp, T.; Baumgartner, M.; Kinkel, S. Success factors for introducing industrial human-robot interaction in practice: An empirically driven framework. Int. J. Adv. Manuf. Technol. 2021, 112, 685–704. [Google Scholar] [CrossRef]
- Vanderborght, B. Unlocking the Potential of Industrial Human–Robot Collaboration: A Vision on Industrial Collaborative Robots for Economy and Society; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Gejo-García, J.; Reschke, J.; Gallego-García, S.; García-García, M. Development of a System Dynamics Simulation for Assessing Manufacturing Systems Based on the Digital Twin Concept. Appl. Sci. 2022, 12, 2095. [Google Scholar] [CrossRef]
- Rahmani, R.; Jesus, C.; Lopes, S.I. Implementations of Digital Transformation and Digital Twins: Exploring the Factory of the Future. Processes 2024, 12, 787. [Google Scholar] [CrossRef]
- Segovia, M.; Garcia-Alfaro, J. Design, Modeling and Implementation of Digital Twins. Sensors 2022, 22, 5396. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Bilberg, A.; Malik, A.A. Digital twin driven human–robot collaborative assembly. CIRP Ann. 2019, 68, 499–502. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Wagg, D.; Worden, K.; Barthorpe, R.; Gardner, P. Digital Twins: State-of-The-Art Future Directions for Modelling and Simulation in Engineering Dynamics Applications. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2020, 6, 030901. [Google Scholar] [CrossRef]
- Psarommatis, F.; May, G. A standardized approach for measuring the performance and flexibility of twins. Int. J. Prod. Res. 2022, 61, 6923–6938. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Wang, Y.; Xu, X.; Lu, Y. Digital Twin-driven online anomaly detection for an automation system based on edge intelligence. J. Manuf. Syst. 2021, 59, 138–150. [Google Scholar] [CrossRef]
- Piromalis, D.; Kantaros, A. Digital Twins in the Automotive Industry: The Road toward Physical-Digital Convergence. Appl. Syst. Innov. 2022, 5, 65. [Google Scholar] [CrossRef]
- Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital twins-based smart manufacturing system design in Industry 4.0: A review. J. Manuf. Syst. 2021, 60, 119–137. [Google Scholar] [CrossRef]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decis. Anal. J. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Li, Y.; Fan, X.; Xiao, S.; Hu, L. A review of the technology standards for enabling digital twin. Digit. Twin 2022, 2, 4. [Google Scholar] [CrossRef]
- Fera, M.; Greco, A.; Caterino, M.; Gerbino, S.; Caputo, F.; Macchiaroli, R.; D’Amato, E. Towards digital twin implementation for assessing production line performance and balancing. Sensors 2020, 20, 97. [Google Scholar] [CrossRef]
- Malik, A.A.; Masood, T.; Bilberg, A. Virtual reality in manufacturing: Immersive and collaborative artificial-reality in design of human-robot workspace. Int. J. Comput. Integr. Manuf. 2020, 33, 22–37. [Google Scholar] [CrossRef]
- Makris, S. Cooperating Robots for Flexible Manufacturing; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Koesters, A.; Koetz, F.; Bock, M.; Fett, M.; Breimann, R.; Kirchner, E. Methodical Development of a Digital Twin for an Industry Valve. Machines 2024, 12, 674. [Google Scholar] [CrossRef]
- Resman, M.; Protner, J.; Simic, M.; Herakovic, N. A Five-Step Approach to Planning Data-Driven Digital Twins for Discret Manufacturing Systems. Appl. Sci. 2021, 11, 3639. [Google Scholar] [CrossRef]
- Kaiser, J.; McFarlane, D.; Hawkridge, G.; André, P.; Leitão, P. A review of reference architectures for digital manufacturing: Classification, applicability and open issues. Comput. Ind. 2023, 149, 103923. [Google Scholar] [CrossRef]
- Siemens Tecnomatix—Process Simulate V15.1.2. Available online: https://docs.plm.automation.siemens.com/tdoc/tecnomatix/15.1.2/tecnomatix_eMS/#uid:index (accessed on 7 February 2024).
- Siemens PLM Virtual Commissioning. Web p. Available online: https://www.plm.automation.siemens.com/en/products/tecnomatix/launch-production/virtual-commissioning (accessed on 22 April 2024).
- Florescu, A.; Barabas, S. Development Trends of Production Systems through the Integration of Lean Management and Industry 4.0. Appl. Sci. 2022, 12, 4885. [Google Scholar] [CrossRef]
Research Areas | Literature Review |
---|---|
Industry 4.0 initiative Industry 4.0 concept | Quin, J. et al. (2016) [1]; Ulrich, S. (2013) [35]; Bauernhansel, T. (2014) [36]; Berger, R. (2014) [37]; Burmeister, C. et al. (2016) [38]. |
Basic conceptual models in Industry 4.0 | Dombrovski (2017) [39]; Sony (2018) [40]; Schumacher, A. (2019) [41]; Santos, R.C. et al. (2020) [42]; Amaral, A. (2021) [43]; Zoubek, M. et al. (2021) [44]. |
Industry 4.0 technologies | Ryalat, M. et al. (2023) [45]; Gupta, B.B. et al. (2021) [46]; Culot, G. et al. (2020) [47]; Pei, E. et al. (2020) [48]; Frank, A. G. et al. (2019) [49]. |
Industry 4.0 implementation in companies and SMEs | Vrchota, J. et al. (2019) [50]; Gajdzik, B. et al. (2021) [51]; Moeuf, A. et al. (2020) [52]; Lodgaard, E. et al. (2022) [53]; Grufman, N. et al. (2020) [54]; Vinodh, S. et al. (2020) [55]; Schönfuß, B. et al. (2021) [56]. |
Industry 4.0 sustainability | Ghobakhloo, M. (2020) [3]; De Sousa Jabbour, A.B.L et al. (2018) [57]; Fritzsche, K. et al. (2018) [58]; Leong, W.D. et al. (2020) [59]; Sharma, M. et al. (2023) [60]. |
Industry 5.0 Society 5.0 | Mourtzis, D. et al. (2024) [4]; Pereira, A.G. et al. (2020) [5]; Romero, D., & Stahre, J. (2021) [6]; Lu, Y., et al. (2022) [7]; Adel, A. (2022) [61]; Aslam, F. et al. (2020) [62]; Polonara, M. et al. (2024) [63]; Borboni, A. et al. (2023) [64]; Li, C. et al. (2023) [65]; Prassida, G.F. et al. (2022) [66]; Kopp, T. et al. (2021) [67]; Vanderborght, B. (2020) [68]. |
Research Areas | Literature Review |
---|---|
“Digital Twin” concept | Bilberg, A., & Malik, A. A. (2019) [74]; Kritzinger, W. et al. (2018) [75]; Wagg, D. et al. (2020) [76]. |
Methodologies, conceptual models, DT configurations | Psarommatis, F. et al. (2022) [22]; Kusiak, A. (2022) [23]; Heindl, W. et al. (2022) [24]; Perno, M. et al. (2022) [25]; Riedelsheimer, T. et al. (2021) [26]; Gupta, B.B. et al. (2021) [46]; Culot, G. et al. (2020) [47]; Segovia, M. et al. (2022) [62]. |
Research on the applicability of the DT | Semeraro, C. et al. (2023) [18]; Wang, K. J. et al. (2021) [19]; Yangguang L. et al. (2021) [20]; Kusiak, A. (2022) [21]; Singh, M. et al. (2020) [29]; Psarommatis, F. et al. (2022) [77]; Huang, H. et al. (2021) [78]; Piromalis, D. et al. (2022) [79]; Leng, J. et al. (2021) [80]. |
Research on the different effects of the DT in various fields of activity | Fett, M. et al. (2023) [28]; Singh, M. et al. (2022) [29]; Kousi, N. et al. (2021) [30]; Zohdi, T.I. (2021) [31]; Zandi, K. et al. (2019) [32]; Li, W. et al. (2020) [33]; Attaran, M. et al. (2023) [81]; Wang, K. et al. (2022) [82]; Agnusdei, G.P. et al. (2021) [27]; Fera, M. et al. (2020) [83]; Malik, A. A et al. (2020) [84]. |
DT integration in Flexible Manufacturing Systems and collaborative robots | Pereira, J.A.P. and Campilho, R.D.S.G. et al. (2022) [11]; Sousa, V.F.C. et al. (2022) [12]; Adel, A. et al. (2022) [61]; Polonara, M. et al. (2024) [63]; Makris, S. (2020) [85]; Koesters, A. et al. (2024) [86]; Resman, M. et al. (2021) [87]; Kaiser, J. et al. (2023) [88]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florescu, A. Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study. Machines 2024, 12, 785. https://doi.org/10.3390/machines12110785
Florescu A. Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study. Machines. 2024; 12(11):785. https://doi.org/10.3390/machines12110785
Chicago/Turabian StyleFlorescu, Adriana. 2024. "Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study" Machines 12, no. 11: 785. https://doi.org/10.3390/machines12110785
APA StyleFlorescu, A. (2024). Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study. Machines, 12(11), 785. https://doi.org/10.3390/machines12110785