Parameter Optimization Method for Centrifugal Feed Disc Discharging Based on Numerical Simulation and Response Surface
Abstract
:1. Introduction
2. Structure and Modeling of Centrifugal Feeding Disc
2.1. Structure of Centrifugal Feeding Disc Device
2.2. Working Principle
2.3. Particle Mechanics Model Analysis
2.4. Establishment of Push Rod Model
2.5. Contact Model Selection and Parameter Setting
3. Numerical Simulation Validation and Analysis
3.1. EDEM Feeding Simulation and Test
3.2. Analysis of Discharge per Second
3.3. One-Factor Simulation Analysis
3.3.1. Influence of Inner and Outer Turntable Speed on Discharge Efficiency
3.3.2. Influence of Tilt Angle of Inner Turntable on Discharge Efficiency
3.3.3. Influence of Conical Turntable Angle on Discharge Efficiency
3.3.4. Influence of Outer Turntable Radius on Discharging Efficiency
3.4. Response Surface Optimization Design
3.4.1. Parameter Selection and Experimental Design
3.4.2. Establishment and Validation of the Regression Equation
3.5. Optimization Design Analysis
4. Conclusions
- Based on the discrete elements method, DEM simulation software was used to carry out a numerical simulation analysis of the centrifugal feed tray device, and the simulation results were verified; the error was about 9.6%, and the simulation results were basically consistent with the prototype test results, which verified the feasibility of using DEM software for a numerical simulation analysis.
- The simulation analysis of five process parameters showed that the speed of the inner turntable, the speed of the outer turntable, the inclination angle of the inner turntable, and the angle of the conical turntable had a significant influence on the discharge result of the centrifugal feeding tray, and the radius of the outer turntable had no significant effect on the discharging result of the centrifugal feeding tray.
- The significant order of the influence of process parameters on the discharging speed of the centrifugal feeding tray was as follows: outer turntable speed > inner turntable speed > inner turntable tilt angle > conical turntable angle. The interaction of the conical turntable angle and the inner turntable tilt angle had the greatest influence on the centrifugal feed tray discharge efficiency.
- The optimal combination of process parameters obtained using the response surface method was an outer turntable speed of 135 r/min, an inner turntable speed of 64 r/min, an inner turntable tilt angle of 7°, and a conical angle of 15°. The discharged efficiency of the optimized centrifugal feeding tray device increased by 31.9%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esmaeilnejad-Ahranjani, P.; Hajimoradi, M. Optimization of industrial-scale centrifugal separation of biological products: Comparing the performance of tubular and disc stack centrifuges. Biochem. Eng. J. 2022, 178, 108281. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Hu, Z.C.; Wang, X.C.; Odhiambo, M.O.; Sun, G.X. Fertilization strategy and application model using a centrifugal variable-rate fertilizer spreader. Int. J. Agr. Biol. Eng. 2018, 11, 41–48. [Google Scholar] [CrossRef]
- Simon, C.; Jan, P.; Dejan, S.; Koen, M.; David, N.; Tim, G.; Jürgen, V. Development of a Stereovision-Based Technique to Measure the Spread Patterns of Granular Fertilizer Spreaders. Sensors 2017, 17, 1396. [Google Scholar] [CrossRef] [PubMed]
- Vičević, M.; Novakovic, K.; Boodhoo, K. Free-Radical Polymerization of Styrene: Kinetic Study in a Spinning Disc Reactor (SDR). Front. Chem. Eng. 2021, 3, 661498. [Google Scholar] [CrossRef]
- Monika, T.K.; Anna, D.; Martin, U.; Corinne, P.F.; Andras, I.; Christos, D.; Joelle, M. Pharmacokinetics and tolerability of prefilled syringe and auto-injector presentations of MSB11456: Results of a randomized, single-dose study in healthy adults. Expert. Rev. Clin. Immu. 2023, 19, 447–455. [Google Scholar]
- Lee, Y.; Zalewski, D.; Oleksy, P.; Wylgaa, E.; Orski, M.; Lee, J.; Kim, S. Usability of the SB11 Pre-filled Syringe (PFS) in Patients with Retinal Diseases. Adv. Ther. 2024, 41, 3426–3436. [Google Scholar] [CrossRef]
- Gentile, K.; Huang, C.B.; Liu, X.Y.; Whitty-Leveill, L.; Hamzaoui, H.; Cristofolli, E.; Rayfield, W.; Afanador, N.L.; Mittal, S.; Krishnamachari, Y.; et al. Variables impacting silicone oil migration and biologics in prefilled syringes. J. Pharm. Sci-US 2023, 112, 2203–2211. [Google Scholar] [CrossRef]
- Cohen, Y.Z.; Zhang, X.; Xia, B.; Kosloski, M.P.; Kamal, M.A.; Davis, J.D.; Kanamaluru, V.; Xu, C. Pharmacokinetics of Subcutaneous Dupilumab Injection with an Autoinjector Device or Prefilled Syringe. Clin. Pharm. Drug Dev. 2022, 11, 675–681. [Google Scholar] [CrossRef]
- Erdnü, F.; Mohr, A.; Krmer, I. Longterm physicochemical stability of ready-to-administer human insulin injection solutions 1 I.U./mL in 50 mL plastic syringes. Pharm. Technol. Hosp. Pharm. 2022, 7, 20210005–20210006. [Google Scholar]
- Fan, T.; Liu, M.L.; Ma, H.Q.; Liu, B.; Shao, Y.L.; Zhao, Y.Z. Investigation of the vibrating feeding system for sphericity separation of coated fuel particles using DEM. Powder Technol. 2021, 383, 131–142. [Google Scholar] [CrossRef]
- Liu, B.; He, L.X.; Zhao, X.L.; Qin, Q.; Guo, Y. Design and characteristic analysis of vibration feeding system for coal-gas dust-removal medium. Clean. Energy 2020, 4, 372–378. [Google Scholar] [CrossRef]
- Niu, R.K.; Zhu, H. Design of a centrifugal linear vibrating feeder driven by an eccentric motor. T Can. Soc. Mech. Eng. 2020, 44, 49–55. [Google Scholar] [CrossRef]
- Li, Y.J.; Gong, Y.G.; Yu, Y.T.; Xie, F.X. Simulation and Experimental Study on Vibrating Screen-Type Grain-Recovery Device with Upper Centrifugal Fan. Processes 2023, 11, 2654. [Google Scholar] [CrossRef]
- Bottin, M.; Minto, R.; Rosati, G. Design of the Drive Mechanism of a Rotating Feeding Device. Machines 2022, 10, 1160. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, Q.; Liu, D.; Yu, A.; Yan, W. A design method of hopper shape optimization with improved mass flow pattern and reduced particle segregation. Chem. Eng. Sci. 2022, 253, 117579. [Google Scholar] [CrossRef]
- Sun, X.X.; Meng, W.J.; Yuan, Y. Feeding head of relative rotary based on EDEM + FLUENT. Adv. Mech. Eng. 2018, 10, 168781401878482. [Google Scholar]
- Yuan, H.; Cai, Y.; Liang, S.; Ku, J.; Qin, Y. Numerical Simulation and Analysis of Feeding Uniformity of Viscous Miscellaneous Fish Bait Based on EDEM Software. Agriculture 2023, 13, 356. [Google Scholar] [CrossRef]
- Liedekerke, P.V.; Tijskens, E.; Dintwa, E. DEM simulations of the particle flow on a centrifugal fertilizer spreader. Powder Technol. 2009, 190, 348–360. [Google Scholar] [CrossRef]
- Liu, J.S.; Gao, C.Q.; Nie, Y.J.; Yang, B.; Ge, R.Y.; Xu, Z.H. Numerical simulation of Fertilizer Shunt-Plate with uniformity based on EDEM software. Comput. Electron. Agr. 2020, 178, 105737. [Google Scholar] [CrossRef]
- Lian, G.; Zhong, W.; Liu, X. DEM study on the mixed feeding process of coal and cylindroid biomass particles in a screw feeder. Adv. Powder Technol. 2021, 32, 2543–2554. [Google Scholar] [CrossRef]
- Bekaert, B.; Penne, L.; Grymonpré, W.; Van Snick, B.; Dhondt, J.; Boeckx, J.; Vogeleer, J.; De Beer, T.; Vervaet, C.; Vanhoorne, V. Determination of a quantitative relationship between material properties, process settings and screw feeding behavior via multivariate data-analysis. Int. J. Pharm. 2021, 602, 120603. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Cho, H.; Kwon, J. Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill. Powder Technol. 2010, 198, 364–372. [Google Scholar] [CrossRef]
- Xie, Y.H.; Chang, G.S.; Yang, J.X.; Zhao, M.Y.; Li, J. Process Optimization of Robotic Polishing for Mold Steel Based on Response Surface Method. Machines 2022, 10, 283. [Google Scholar] [CrossRef]
- Yuan, H.; Liang, S.; Wang, J.; Lu, Y. Numerical simulation and analysis of vibrating rice filling based on EDEM software. Agriculture 2022, 12, 2013. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V. Response surface-based optimization of thermal characteristics for frustum roughened solar air heater: An experimental and numerical study. Int. J. Heat. Fluid. Fl. 2024, 108, 109479. [Google Scholar] [CrossRef]
- Felicita, A.; Kumar, P.; Ajaykumar, A.R.; Nagaraja, B.; Al-Mdallal, Q. Application of Design of Experiments for Single-Attribute Optimization using Response Surface Methodology for Flow over Non-linear Curved Stretching Sheet. Alex. Eng. J. 2024, 100, 246–259. [Google Scholar] [CrossRef]
- Shafiq, A.; Sindhu, T.N.; Khalique, C.M. Numerical investigation and sensitivity analysis on bioconvective tangent hyperbolic nanofluid flow towards stretching surface by response surface methodology. Alex. Eng. J. 2020, 59, 4533–4548. [Google Scholar] [CrossRef]
Materials | Poisson’s Ratio | Shear Modulus/GPa | Density/g·cm−3 |
---|---|---|---|
PP | 0.42 | 0.89 | 900 |
POM | 0.38 | 2.60 | 1420 |
Q235 Steel | 0.27 | 70.0 | 7800 |
Contact Form | Recovery Coefficient | Static Friction Factor | Dynamic Friction Factor |
---|---|---|---|
Push rod–Push rod | 0.3 | 0.36 | 0.05 |
Push rod–Turntable | 0.2 | 0.4 | 0.08 |
Push rod–Shell body | 0.2 | 0.3 | 0.01 |
Outer Turntable Speed/r/min | Number of Discharges/Pieces | |||
---|---|---|---|---|
The First Time | The Second Time | The Third Time | Average Value | |
40 | 46 | 49 | 47 | 47 |
60 | 50 | 51 | 53 | 51 |
80 | 54 | 52 | 53 | 54 |
100 | 59 | 58 | 58 | 58 |
120 | 63 | 60 | 63 | 62 |
Level | Outer Turntable Speed A (r/min) | Inner Turntable Speed B (r/min) | Tilt Angle of Inner Turntable C (°) | Conical Turntable Angle D (°) |
---|---|---|---|---|
1 | 120 | 60 | 5 | 12 |
2 | 140 | 65 | 7.5 | 15 |
3 | 160 | 70 | 10 | 18 |
No. | Factors | Number of Discharges | |||
---|---|---|---|---|---|
Outer Turntable Speed A (r/min) | Inner Turntable Speed B (r/min) | Tilt Angle of Inner Turntable C (°) | Conical Turntable Angle D (°) | ||
1 | 2 | 2 | 2 | 2 | 62 |
2 | 3 | 1 | 2 | 2 | 44 |
3 | 3 | 3 | 2 | 2 | 35 |
4 | 3 | 2 | 2 | 3 | 40 |
5 | 2 | 3 | 3 | 2 | 39 |
6 | 2 | 2 | 3 | 3 | 50 |
7 | 3 | 2 | 3 | 2 | 36 |
8 | 1 | 2 | 2 | 3 | 53 |
9 | 2 | 2 | 3 | 1 | 44 |
10 | 2 | 1 | 3 | 2 | 44 |
11 | 2 | 2 | 1 | 3 | 42 |
12 | 2 | 1 | 2 | 3 | 57 |
13 | 2 | 1 | 1 | 2 | 55 |
14 | 2 | 2 | 2 | 2 | 64 |
15 | 1 | 1 | 2 | 2 | 48 |
16 | 2 | 1 | 2 | 1 | 52 |
17 | 2 | 2 | 2 | 2 | 61 |
18 | 3 | 2 | 2 | 1 | 50 |
19 | 2 | 3 | 2 | 3 | 41 |
20 | 1 | 3 | 2 | 2 | 46 |
21 | 1 | 2 | 2 | 1 | 51 |
22 | 2 | 3 | 2 | 1 | 52 |
23 | 2 | 3 | 1 | 2 | 41 |
24 | 2 | 2 | 1 | 1 | 54 |
25 | 1 | 2 | 3 | 2 | 45 |
26 | 1 | 2 | 1 | 2 | 54 |
27 | 3 | 2 | 1 | 2 | 34 |
Source of Variation | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|
model | 1674.25 | 14 | 119.59 | 20.41 | <0.0001 |
A | 283.32 | 1 | 283.32 | 48.36 | <0.0001 |
B | 176.57 | 1 | 176.57 | 30.14 | 0.0001 |
C | 41.85 | 1 | 41.85 | 7.14 | 0.0203 |
D | 29.52 | 1 | 29.52 | 5.04 | 0.0444 |
AB | 12.32 | 1 | 12.32 | 2.10 | 0.1726 |
AC | 32.34 | 1 | 32.34 | 5.52 | 0.0367 |
AD | 33.11 | 1 | 33.11 | 5.65 | 0.0349 |
BC | 18.77 | 1 | 18.77 | 3.20 | 0.0987 |
BD | 67.13 | 1 | 67.13 | 11.46 | 0.0054 |
CD | 83.72 | 1 | 83.72 | 14.29 | 0.0026 |
A2 | 571.21 | 1 | 571.21 | 97.50 | <0.0001 |
B2 | 334.67 | 1 | 334.67 | 57.13 | <0.0001 |
C2 | 529.12 | 1 | 529.12 | 90.32 | <0.0001 |
D2 | 84.91 | 1 | 84.91 | 14.49 | 0.0025 |
Residual error | 70.30 | 12 | 5.86 | ||
Lack of fit | 64.64 | 10 | 6.46 | 2.29 | 0.3426 |
Pure error | 5.66 | 2 | 2.83 | ||
Total value | 1744.55 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Yin, C.; Qian, J.; Sun, Z.; Wang, L. Parameter Optimization Method for Centrifugal Feed Disc Discharging Based on Numerical Simulation and Response Surface. Machines 2024, 12, 799. https://doi.org/10.3390/machines12110799
Lu K, Yin C, Qian J, Sun Z, Wang L. Parameter Optimization Method for Centrifugal Feed Disc Discharging Based on Numerical Simulation and Response Surface. Machines. 2024; 12(11):799. https://doi.org/10.3390/machines12110799
Chicago/Turabian StyleLu, Kai, Cheng Yin, Jing Qian, Zhiyan Sun, and Liqiang Wang. 2024. "Parameter Optimization Method for Centrifugal Feed Disc Discharging Based on Numerical Simulation and Response Surface" Machines 12, no. 11: 799. https://doi.org/10.3390/machines12110799
APA StyleLu, K., Yin, C., Qian, J., Sun, Z., & Wang, L. (2024). Parameter Optimization Method for Centrifugal Feed Disc Discharging Based on Numerical Simulation and Response Surface. Machines, 12(11), 799. https://doi.org/10.3390/machines12110799