A Numerical Method to Determine the Radial Electromagnetic Force of the Switched Reluctance Motor Under Air Gap Eccentricity
Abstract
:1. Introduction
2. Varieties of Air Gap Eccentricity
3. Modelling of Radial Electromagnetic Force Under Air Gap Eccentricity
3.1. Radial Electromagnetic Force Under Vertical Eccentricity
3.2. Radial Force Under Tilt Eccentricity
3.3. Experiment and Finite Element Simulation Verification
4. Model for Dynamic Air Gap Eccentricity of SRM
4.1. Dynamic Model for SRM
4.1.1. Electrical Angle Calculating Module
4.1.2. Current Calculation Module
4.1.3. Current Hysteresis Control Module
4.1.4. Torque and Radial Force Calculation Module
4.2. Dynamic Model Verification
4.3. Dynamic Eccentricity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, W.; Chen, H.; Liu, Y.; Cheng, H.; Orabi, M. A Magnetic Field Decoupling Double Stator Switched Reluctance Machine. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Murty, V.S.; Jain, S.; Ojha, A. Analyzing modeled configuration using finite element analysis for performance prediction of LSRM. Neural Comput. Appl. 2022, 34, 21175–21189. [Google Scholar] [CrossRef]
- Racha, A.; Guillaume, P.; Mounaim, T.; Jean-Philippe, L. Comparison of 8/6 radial and axial flux switched reluctance machines. COMPEL 2019, 38, 1756–1769. [Google Scholar]
- Liang, W.; Wang, J.; Luk, P.C.K.; Fei, W. Analytical study of stator tooth modulation on the electromagnetic radial force in permanent magnet synchronous machines. IEEE Trans. Ind. Electron. 2020, 68, 11731–11739. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Z.; Li, X. Analytical modeling of radial coupled vibration and super-harmonic resonance in switched reluctance motor. J. Vib. Eng. Technol. 2021, 9, 449–467. [Google Scholar] [CrossRef]
- Xu, M.-X.; He, Y.-L.; Zhang, W.; Dai, D.-R.; Liu, X.-A.; Zheng, W.-J.; Wan, S.-T.; Gerada, D.; Shi, S.-Z. Impact of Radial Air-Gap Eccentricity on Stator End Winding Vibration Characteristics in DFIG. Energies 2022, 15, 6426. [Google Scholar] [CrossRef]
- He, Y.L.; Sun, Y.X.; Xu, M.; Wang, X.; Wu, Y.; Vakil, G.; Gerada, D.; Gerada, C. Rotor UMP characteristics and vibration properties in synchronous generator due to 3D static airgap eccentricity faults. IET Electr. Power Appl. 2020, 14, 961–971. [Google Scholar] [CrossRef]
- Yavuz, S.; Parspour, N.; Ma, L. Analytical Modelling of a Parametrized Switched Reluctance Motor with Adapting Flux Tube Method. In Proceedings of the 19th IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018. [Google Scholar]
- Kondelaji, M.A.J.; Mirsalim, M. Non-linear Modeling of a Multi-Layer Switched Reluctance Motor with Magnetically-Disconnected Stator Modules. In Proceedings of the 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, 12–14 February 2019. [Google Scholar]
- Ali, G.; Mojtaba, M. Split-Tooth Double-Rotor Permanent Magnet Switched Reluctance Motor. IEEE Trans. Transp. Electrif. 2022, 8, 2400–2411. [Google Scholar]
- Mohammad Amin Jalali, K.; Ehsan Farmahini, F.; Mojtaba, M. Teethed-Pole Switched Reluctance Motors Assisted with Permanent Magnets: Analysis and Evaluation. IEEE Trans. Energy Convers. 2021, 36, 2131–2140. [Google Scholar] [CrossRef]
- Roy, D.; Sengupta, M. An Experimentally Validated Novel Analytical Approach for Modeling of a Saturated Switched Reluctance Motor. IEEE Trans. Magn. 2022, 58, 1–11. [Google Scholar] [CrossRef]
- Kadi, L.; Brouri, A.; Ouannou, A.; Lahdachi, K. Modeling and Determination of Switched Reluctance Machine Nonlinearity. In Proceedings of the 4th IEEE Conference on Control Technology and Applications (CCTA), Montreal, QC, Canada, 24–26 August 2020. [Google Scholar]
- Sun, X.D.; Tang, X.T.; Tian, X.; Wu, J.L.; Zhu, J.G. Position Sensor-less Control of Switched Reluctance Motor Drives Based on a New Sliding Mode Observer Using Fourier Flux Linkage Model. IEEE Trans. Energy Convers. 2022, 37, 978–988. [Google Scholar] [CrossRef]
- Chen, H.; Yan, W.J.; Chen, L.; Sun, M.; Liu, Z. Analytical Polynomial Models of Nonlinear Magnetic Flux Linkage for SRM. IEEE Trans. Appl. Supercond. 2018, 28, 5205307. [Google Scholar] [CrossRef]
- Rocca, R.; De Donato, G.; Bolognesi, P.; Boccaletti, C.; Capponi, F.G. Improved Design-Oriented Analytical Modelling of Switched Reluctance Machines Based on Fröhlich-Kennelly Equations. IEEE Trans. Energy Convers. 2024, 39, 739–746. [Google Scholar] [CrossRef]
- Zuo, S.; Liu, Z.; Hu, S. Influence of Rotor Eccentricity on Radial Electromagnetic Force Characteristics in Switched Reluctance Motors and Compensation. Electr. Power Compon. Syst. 2020, 48, 388–398. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, X.L.; Cui, R.Z.; Fang, X.Y.; Zhang, W.; Li, Y.H.; Cheng, D. Torque analytical model of switched reluctance motor considering magnetic saturation. IET Electr. Power Appl. 2020, 14, 1148–1153. [Google Scholar] [CrossRef]
- Deng, Z.X.; Luo, X.L.; Liao, X.; Li, X.; Du, Z.; Hou, M.; Wei, H. Analysis and suppression of the negative effect of electromagnetic characteristics of wheel hub motor drive system on vehicle dynamics performance. In Nonlinear Dynamics; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Farahani, E.F.; Kondelaji, M.A.J.; Mirsalim, M. An Innovative Hybrid-Excited Multi-Tooth Switched Reluctance Motor for Torque Enhancement. IEEE Trans. Ind. Electron. 2021, 68, 982–992. [Google Scholar] [CrossRef]
- Hu, Y.H.; Deng, Y.; Liu, Q.W.; He, X.N. Asymmetry Three-Level Gird-Connected Current Hysteresis Control With Varying Bus Voltage and Virtual Oversample Method. IEEE Trans. Power Electron. 2014, 26, 3214–3222. [Google Scholar] [CrossRef]
- Penovi, E.; Maestri, S.; Retegui, R.G.; Wassinger, N.; Benedetti, M. Control System for a Pulsed Current Source based on Digital Hysteresis and Current Estimation. IEEE Lat. Am. Trans. 2014, 12, 1214–1220. [Google Scholar] [CrossRef]
- Ogbuka, C.; Nwosu, C.; Agu, M. A high performance hysteresis current control of a permanent magnet synchronous motor drive. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 1–14. [Google Scholar] [CrossRef]
- Cho, H.J.; Kwon, Y.C.; Sul, S.K. Torque Ripple-Minimizing Control of IPMSM with Optimized Current Trajectory. IEEE Trans. Ind. Appl. 2021, 57, 3852–3862. [Google Scholar] [CrossRef]
- Song, S.J.; Fang, G.L.; Hei, R.; Jiang, J.; Ma, R.; Liu, W. Torque Ripple and Efficiency Online Optimization of Switched Reluctance Machine Based on Torque per Ampere Characteristics. IEEE Trans. Power Electron. 2020, 35, 9608–9616. [Google Scholar] [CrossRef]
- Shi, K.; Cheng, D.; Yuan, X.F.; Liu, L.; Wu, L. Interacting multiple model-based adaptive control system for stable steering of distributed driver electric vehicle under various road excitations. ISA Trans. 2020, 103, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, Z.X. Negative dynamics effect of in-wheel switched reluctance motor with inclined airgap eccentricity on handing stability for electric vehicle. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 2023, 238, 09544070231186198. [Google Scholar] [CrossRef]
- Deng, Z.X.; Qin, H.S.; Ma, T.J. Negative effect and optimal control of in-wheel motor with inclined eccentricity on driving safety for electric vehicle. Proc. Inst. Mech. Eng. Part K-J. Multi-Body Dyn. 2024, 238, 14644193241260975. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Rotor Diameter (Dr) [mm] | 382 | Rotor Pole Arc (βr) [deg] | 23 |
Stator Diameter (Ds) [mm] | 266 | Stator Pole Arc (βs) [deg] | 22 |
Shaft Diameter (Dsh) [mm] | 90 | Rotor Yoke (Lr) [mm] | 32 |
Air gap Length (lg) [mm] | 0.5 | Stator Yoke (Ls) [mm] | 46 |
Stack Length (Hg) [mm] | 74 | Number of Turns (Nc) [−] | 136 |
Tilt Eccentricity Rate [%] | Measurement Value [N] | Unbalanced Tilt Torque [Nm] | |||
---|---|---|---|---|---|
Left Sensor | Right Sensor | Experiment | Simulation | Numerical Model | |
0% | 138.1 | 138.1 | 0 | 0 | 0 |
10% | 125.5 | 144.5 | 1.283 | 1.067 | 1.166 |
20% | 117.9 | 152.1 | 2.309 | 2.245 | 2.105 |
30% | 109.6 | 160.4 | 3.429 | 3.724 | 3.573 |
Output Parameters | MTSRM [22] Experiment | Proposed Dynamic Model | Error, % | MTPMSRM [22] Experiment | Proposed Dynamic Model | Error, % | |
---|---|---|---|---|---|---|---|
Static Torque Performance | Current [A] | 6 | 6 | - | 6 | 6 | - |
Maximum Torque [Nm] | 0.85 | 0.831 | 2.286 | 1.43 | 1.449 | 1.328 | |
Average Torque [Nm] | 0.54 | 0.524 | 3.053 | 0.86 | 0.875 | 1.744 | |
Dynamic Torque Performance | Rotation Speed [RPM] | 200 | 200 | - | 200 | 200 | - |
RMS Current [A] | 3.05 | 3.061 | 0.361 | 2.37 | 2.384 | 0.415 | |
Maximum Torque [Nm] | 0.85 | 0.851 | 0.117 | 1.43 | 1.434 | 0.279 | |
Average Torque [Nm] | 0.41 | 0.442 | 7.805 | 0.67 | 0.695 | 8.209 | |
Torque Ripple [%] | 121 | 124 | 2.479 | 119 | 123 | 3.361 | |
Torque per Ampere [Nm/A] | 0.13 | 0.139 | 6.923 | 0.28 | 0.302 | 7.857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Deng, Z.; Liu, W.; Hou, M. A Numerical Method to Determine the Radial Electromagnetic Force of the Switched Reluctance Motor Under Air Gap Eccentricity. Machines 2024, 12, 823. https://doi.org/10.3390/machines12110823
Ma T, Deng Z, Liu W, Hou M. A Numerical Method to Determine the Radial Electromagnetic Force of the Switched Reluctance Motor Under Air Gap Eccentricity. Machines. 2024; 12(11):823. https://doi.org/10.3390/machines12110823
Chicago/Turabian StyleMa, Tianji, Zhaoxue Deng, Wanli Liu, and Mengmeng Hou. 2024. "A Numerical Method to Determine the Radial Electromagnetic Force of the Switched Reluctance Motor Under Air Gap Eccentricity" Machines 12, no. 11: 823. https://doi.org/10.3390/machines12110823
APA StyleMa, T., Deng, Z., Liu, W., & Hou, M. (2024). A Numerical Method to Determine the Radial Electromagnetic Force of the Switched Reluctance Motor Under Air Gap Eccentricity. Machines, 12(11), 823. https://doi.org/10.3390/machines12110823