Experimental and Numerical Analysis of a Car Body Shield Loaded with a Ballistic Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shield Material and Its Characteristics
2.1.1. Aramid Laminate
2.1.2. Magnetic Foil
2.2. Gun Fire and Car Body Material Characteristics
2.3. Laboratory Tests
2.4. Numerical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lott, J.R. Comparing the Global Rate of Mass Public Shootings to the U.S.’s Rate and Comparing Their Changes over Time, Rochester, New York, 2018. Available online: https://ssrn.com/abstract=3289010 (accessed on 10 February 2023).
- Gzik, M.; Wolański, W.; Gzik-Zroska, B.; Joszko, K.; Burkacki, M.; Suchoń, S. Analysis of various factors impact on safety of armored vehicle crew during an IED explosion, Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. In Proceedings of the 20th Polish Conference on Biocybernetics and Biomedical Engineering, Kraków, Poland, 20–22 September 2017. [Google Scholar]
- Branco, G.C.P.; Basile, E.G.; Morrone, R.G.; Cardoso, A.V.D.; Folgar, F.; Coelho, A.S. Ballistic armoring of passenger cars on the assembly line adds quality and passengers comfort by using advanced and light weight composite materials. SAE Tech. Pap. 2004, 113, 650–659. [Google Scholar]
- Siengchin, S. A review on lightweight materials for defence applications: Present and future developments. Def. Technol. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Pach, J.; Kuterek, E. Investigation of the quasi-static penetration resistance behaviour of carbon/aramid fibre-reinforced PP laminate. Materials 2021, 14, 709. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Ballistic impact mechanisms—A review on textiles and fibre-reinforced composites impact responses. Compos. Struct. 2019, 223, 110966. [Google Scholar] [CrossRef]
- Ballistic Door Panels. Available online: https://www.pro-gard.com/product/ballistic-door-panels/ (accessed on 10 December 2022).
- Scanfiber Composites Enhanced Spall-Liner. Available online: https://scanfiber.dk/applikationer/beskyttelse-til-lands/enhanced-spall-liner.aspx (accessed on 12 December 2022).
- Mamys, M. Design of an Energy-Intensive Shield for the Inner Part of the Front Car Door in Terms of Penetrator—Shield. Ph.D. Thesis, Wroclaw University of Technology, Wrocław, Poland, 2023. [Google Scholar]
- Pratomo, A.N.; Santosa, S.P.; Gunawan, L.; Putra, I.S. Countermeasures design and analysis for occupant survivability of an armored vehicle subjected to blast load. J. Mech. Sci. Technol. 2020, 34, 1893–1899. [Google Scholar] [CrossRef]
- Hazell, P. Armour: Materials, Theory, and Design; Taylor & Francis Group: New York, NY, USA, 2016. [Google Scholar]
- Ojoc, G.G.; Pirvu, C.; Sandu, S.; Deleanu, L. Standardization in testing ballistic protection systems. IOP Conf. Ser. Mater. Sci. Eng. 2020, 724, 012049. [Google Scholar] [CrossRef]
- CEN-EN 1522:2000; Windows, Doors, Shutters and Blinds—Bullet Resistance—Requirements and Classification. European Committee for Standardization: Brussels, Belgium, 2000.
- DuPontTM Neoprene WRT. Product Sales Specifications. Available online: https://www.vanderbiltchemicals.com/specs/76447.pdf (accessed on 10 December 2022).
- ASTM D638-99; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2002.
- Car Body Building Types History and Used Materials. Available online: https://autokult.pl/budowa-nadwozi-samochodowych-typy-historia-i-stosowane-materialy-cz-2,6809104216987265a (accessed on 12 December 2022).
- Kędzierski, P.; Watorowska, J. Application of meshless methods for pistol bullets modelling. Biul. WAT. 2021, 70, 89–99. [Google Scholar]
- Marechal, C.; Bresson, F.; Haugou, G. Numerical tools for the impact parameters identification of the 9 mm Parabellum FMJ Bullet. Engng. Trans. 2011, 59, 263–272. [Google Scholar]
- Zochowski, P.; Bajkowski, M.; Grygoruk, R.; Burian, W.; Pyka, D.; Jamroziak, K.; Bocian, M. Ballistic impact resistance of bulletproof vest Inserts containing printed titanium structures. Metals 2021, 11, 225. [Google Scholar] [CrossRef]
- Pyka, D.; Pach, J.; Bocian, M.; Jamroziak, K. Qualitative evaluation of modeling the aramid fabric elementary cell in the piercing process with a 9 mm full metal jacket projectile. In Proceedings of the 14th International Scientific Conference Computer Aided Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 581–590. [Google Scholar]
- Mackiewicz, A.; Pyka, D.; Pach, J.; Jamroziak, K.; Bocian, M. Comparison of numerical modelling methods of innovative materials for ballistic shields. In Advanced Materials for Defense: Development, Analysis and Applications; Springer Proceedings in Materials; Springer: Berlin/Heidelberg, Germany, 2020; Volume 4, pp. 119–127. [Google Scholar]
- Soydan, A.M.; Tunaboylu, B.; Elsabagh, A.G.; Sarı, A.K.; Akdeniz, R. Simulation and experimental tests of ballistic impact on composite laminate armor. Adv. Mater. Sci. Eng. 2018, 2018, 4696143. [Google Scholar] [CrossRef]
- Zochowski, P.; Bajkowski, M.; Grygoruk, R.; Burian, W.; Pyka, D.; Jamroziak, K.; Bocian, M. Finite element modeling of ballistic inserts containing aramid fabrics under projectile impact conditions—Comparison of methods. Compos. Struct. 2022, 294, 115752. [Google Scholar] [CrossRef]
- Siddharth, S.; Ramesh, A. Homogenization of mechanical properties of unidirectional fibre reinforced composites with matrix and interface defects: A Finite Element Approach. J. Phys. Conf. Ser. 2019, 1355, 012040. [Google Scholar] [CrossRef]
- Goroch, O.; Gulbinowicz, Z.; Magier, M.; Bednarczyk, E.; Skoczylas, P.; Pankowski, Z.; Sweklej, P.; Zochowski, P.; Jedrzejewski, W. Development and experimental verification of the new WHA sinters intended for kinetic energy projectiles. Contin. Mech. Therm. 2023, 35, 2193–2205. [Google Scholar] [CrossRef]
- Sławski, S.; Szymiczek, M.; Kaczmarczyk, J.; Domin, J.; Duda, S. Experimental and numerical investigation of striker shape influence on the destruction image in multilayered composite after low velocity impact. App. Sci. 2020, 10, 288. [Google Scholar] [CrossRef]
- Asemani, S.S.; Liaghat, G.; Ahmadi, H.; Anani, Y.; Khodadadi, A.; Charandabi, S.C. The experimental and numerical analysis of the ballistic performance of elastomer matrix Kevlar composites. Polym. Test. 2021, 102, 107311. [Google Scholar] [CrossRef]
- Pandya, K.; Kumar, C.; Nair, N.; Patil, P.; Naik, N. Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites. Int. J. Damage Mech. 2015, 24, 471–511. [Google Scholar] [CrossRef]
- Oliveira Braga, F.; Lima, E., Jr.; Sousa Lima, E.; Monteiro, S. The effect of thickness on aramid fabric laminates subjected to 7.62 mm ammunition ballistic impac. Mater. Res. 2017, 20, 676–680. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.; Ma, T.; Huang, X.; Li, W.; Liu, M. Numerical investigation of composite laminate subjected to combined loadings with blast and fragments. Compos. Struct. 2019, 214, 335–347. [Google Scholar] [CrossRef]
- Ingle, S.; Yerramalli, C.S.; Guha, A.; Mishra, S. Effect of material properties on ballistic energy absorption of woven fabrics subjected to different levels of inter-yarn friction. Compos. Struct. 2021, 266, 11382. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact. Compos. Struct. 2019, 224, 111015. [Google Scholar] [CrossRef]
- Jamroziak, K.; Bocian, M.; Kulisiewicz, M. Effect of the attachment of the ballistic shields on modelling the piercing process. Mechanika 2013, 19, 549–553. [Google Scholar] [CrossRef]
Specification | Unit | LIM 1 Laminate | Single Fabric of Aramid | Matrix |
---|---|---|---|---|
Laminate thickness | [mm] | 4.8 | 0.6 | 0.2 |
Areal density | [g/cm2] | 520 | 46 | 2.0 |
Density ρ | [g/cm3] | 1.14 | 0.766 (66 thread on 10 cm) | 1.25 |
Binder type | - | - | - | Neoprene WRT |
Percentage of fibers | [%] | 70.8 | - | - |
Young’s modulus E | [GPa] | 7.46 | 7.5 | - |
Tensile strength Rm | [MPa] | 319 | 466.7 1 | - |
Yield strength Re | [MPa] | 318.5 | 500 | |
Elongation to break | [%] | 17 | 11 |
Constants | μi | μi |
---|---|---|
1 | −355.9176616 | 1.81890242 |
2 | 151.800249 | 2.21739197 |
3 | 210941268 | 1.37908823 |
Round Mass | Bullet Weight | Muzzle Velocity | Jacket Type | Core Type |
---|---|---|---|---|
12 g | 8.0 g | 360 ± 10 m/s | FMJ (brass M 90) | Lead (lead alloy Pb1 antimony) |
Parameter | Unit | Brass M90 | Lead Alloy Pb1antimony | Steel | LIM 1 |
---|---|---|---|---|---|
ρ | kg/m3 | 8730 | 11,300 | 7800 | 1440 |
E | MPa | 100,000 | 115,000 | 210,000 | 7500 |
v | [-] | 0.34 | 0.42 | 0.34 | 0.30 |
Model J-C | |||||
A | MPa | 90 | 24 | 275 | 270 |
B | MPa | 292 | 40 | 350 | 319 |
n | [-] | 0.31 | 0.50 | 0.10 | 0.10 |
C | s−1 | 0.025 | 0.1 | 0.003 | 0.001 |
Parameter | Brass M90 | Lead | Metal Sheet |
---|---|---|---|
d1 | 0.54 | - | 1.40 |
d2 | 4.89 | - | 0.08 |
d3 | −3.03 | - | −0.04 |
d4 | 0.014 | - | 0.00 |
d5 | 1.12 | - | 0.00 |
Tm [K] | 1189 | 760 | 1800 |
[s−1] | 0.0005 | 0.0005 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamys, M.; Pyka, D.; Kurzawa, A.; Baocian, M.; Barsan, N.; Jamroziak, K. Experimental and Numerical Analysis of a Car Body Shield Loaded with a Ballistic Impact. Machines 2024, 12, 88. https://doi.org/10.3390/machines12020088
Mamys M, Pyka D, Kurzawa A, Baocian M, Barsan N, Jamroziak K. Experimental and Numerical Analysis of a Car Body Shield Loaded with a Ballistic Impact. Machines. 2024; 12(2):88. https://doi.org/10.3390/machines12020088
Chicago/Turabian StyleMamys, Maciej, Dariusz Pyka, Adam Kurzawa, Mirosław Baocian, Narcis Barsan, and Krzysztof Jamroziak. 2024. "Experimental and Numerical Analysis of a Car Body Shield Loaded with a Ballistic Impact" Machines 12, no. 2: 88. https://doi.org/10.3390/machines12020088
APA StyleMamys, M., Pyka, D., Kurzawa, A., Baocian, M., Barsan, N., & Jamroziak, K. (2024). Experimental and Numerical Analysis of a Car Body Shield Loaded with a Ballistic Impact. Machines, 12(2), 88. https://doi.org/10.3390/machines12020088