A New Sliding-Mode Observer-Based Deadbeat Predictive Current Control Method for Permanent Magnet Motor Drive
Abstract
:1. Introduction
2. Mathematical Model of PMSM and DPCC
2.1. Mathematical Model of PMSM
2.2. Mathematical Model of DPCC
2.2.1. Basic Control Block Diagram of DPCC
2.2.2. Mathematical Model of DPCC
3. DPCC Control System Based on SMO
3.1. The Basic Principle of Sliding-Mode Control
3.2. Design of Speed Loop Sliding-Mode Controller
3.3. Design of DPCC SMO
4. Simulation Verification
5. Experimental Results
5.1. The Experiment at 60 rpm
5.2. The Experiment at 120 rpm
5.3. Effect of Temperature Rise at 60 rpm
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cavus, B.; Aktas, M. MPC-Based flux weakening control for induction motor drive with DTC for electric vehicles. IEEE Trans. Power Electron. 2022, 38, 4430–4439. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Li, X.; Zhao, H.; Zhang, Y.; Wang, S.; Ahmad, T.; Liu, T.; Shuang, F.; Wu, T. A PMSM Control system for electric vehicle using improved exponential reaching law and proportional resonance theory. IEEE Trans. Veh. Technol. 2023, 72, 8566–8578. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, X.; Hu, Q.; Li, Z.; Jiang, Z.; Yu, Y.; Chen, Z. A Modified deadbeat predictive current control for improving dynamic performance of PMSM. IEEE Trans. Power Electron. 2022, 37, 14173–14185. [Google Scholar] [CrossRef]
- Lin, C.-K.; Liu, T.-H.; Yu, J.-T.; Fu, L.-C.; Hsiao, C.-F. Model-Free Predictive Current Control for Interior Permanent-Magnet Synchronous Motor Drives Based on Current Difference Detection Technique. IEEE Trans. Ind. Electron. 2014, 61, 667–681. [Google Scholar] [CrossRef]
- Dong, Z.; Song, Z.; Wang, W.; Liu, C. Improved zero-sequence current hysteresis control-based space vector modulation for open-end winding PMSM drives with common DC bus. IEEE Trans. Ind. Electron. 2022, 70, 10755–10760. [Google Scholar] [CrossRef]
- Xue, Y.; Meng, D.; Yin, S.; Han, W.; Yan, X.; Shu, Z.; Diao, L. Vector-based model predictive hysteresis current control for asynchronous motor. IEEE Trans. Ind. Electron. 2019, 66, 8703–8712. [Google Scholar] [CrossRef]
- Ruan, Z.; Song, W.; Zhao, L.; Zhang, Y.; Guo, Y. A variable switching frequency space vector pulse width modulation control strategy of induction motor drive system with torque ripple prediction. IEEE Trans. Energy Convers. 2023, 38, 993–1003. [Google Scholar] [CrossRef]
- Nguyen, M.-K.; Choi, Y.-O. PWM control scheme for quasi-switched-boost inverter to improve modulation index. IEEE Trans. Power Electron. 2018, 33, 4037–4044. [Google Scholar] [CrossRef]
- Shan, Y.; Hu, J.; Chan, K.W.; Islam, S. A Unified Model Predictive Voltage and Current Control for Microgrids With Distributed Fuzzy Cooperative Secondary Control. IEEE Trans. Ind. Inform. 2021, 17, 8024–8034. [Google Scholar] [CrossRef]
- Gao, S.; Yuan, L.; Dai, Y.; Mou, D.; Chen, K.; Zhao, Z. High-Frequency Current Predictive Control Method for Multiactive-Bridge Converter. IEEE Trans. Power Electron. 2022, 37, 10144–10148. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Wang, G.; Li, S.; Yu, L. Generalized proportional integral observer-based robust finite control set predictive current control for induction motor systems with time-varying disturbances. IEEE Trans. Ind. Inform. 2018, 14, 4159–4168. [Google Scholar] [CrossRef]
- Gao, J.; Gong, C.; Li, W.; Liu, J. Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM. IEEE Trans. Ind. Electron. 2019, 67, 5816–5819. [Google Scholar] [CrossRef]
- Sun, Z.; Deng, Y.; Wang, J.; Yang, T.; Wei, Z.; Cao, H. Finite control set model-free predictive current control of PMSM with two voltage vectors based on ultralocal model. IEEE Trans. Power Electron. 2022, 38, 776–788. [Google Scholar] [CrossRef]
- Liu, Q.; Hameyer, K. Torque ripple minimization for direct torque control of PMSM with modified FCSMPC. IEEE Trans. Ind. Appl. 2016, 52, 4855–4864. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, S.; Zhang, G.; Shi, T.; Xia, C. A Modified double vectors model predictive torque control of Permanent magnet synchronous motor. IEEE Trans. Power Electron. 2019, 34, 11419–11428. [Google Scholar] [CrossRef]
- Petkar, S.G.; Eshwar, K.; Thippiripati, V.K. A Modified model predictive current control of permanent magnet synchronous motor drive. IEEE Trans. Ind. Electron. 2020, 68, 1025–1034. [Google Scholar] [CrossRef]
- Ke, D.; Wang, F.; Yu, X.; Davari, S.A.; Kennel, R. Predictive error model-based enhanced observer for PMSM deadbeat control systems. IEEE Trans. Ind. Electron. 2023, 71, 2242–2252. [Google Scholar] [CrossRef]
- Xu, Y.; Li, S.; Zou, J. Integral sliding mode control based deadbeat predictive current control for PMSM drives with disturbance rejection. IEEE Trans. Power Electron. 2021, 37, 2845–2856. [Google Scholar] [CrossRef]
- Gao, F.; Yin, Z.; Li, L.; Li, T.; Liu, J. Gaussian noise suppression in deadbeat predictive current control of permanent magnet synchronous motors based on augmented fading kalman filter. IEEE Trans. Energy Convers. 2022, 38, 1410–1420. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Li, S.; Yu, X. High-Order Mismatched Disturbance Compensation for Motion Control Systems Via a Continuous Dynamic Sliding-Mode Approach. IEEE Trans. Ind. Inform. 2013, 10, 604–614. [Google Scholar] [CrossRef]
- Yang, J.; Chen, W.-H.; Li, S. Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl. 2011, 5, 2053–2062. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Chen, Z.; Yin, S. A Novel adaptive observer-based fault reconstruction and state estimation method for markovian jump systems. IEEE Syst. J. 2020, 15, 2305–2313. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W. Incremental quadratic constrained nonlinear adaptive reduced-order observer and its application to chaos synchronization. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019; pp. 767–770. [Google Scholar]
- Du, C.; Yin, Z.; Liu, J.; Zhang, Y.; Sun, X. A Speed Estimation Method for Induction Motors Based on Active Disturbance Rejection Observer. IEEE Trans. Power Electron. 2020, 35, 8429–8442. [Google Scholar] [CrossRef]
- Yao, H.; Wu, J.; Xi, J.; Wang, L. Active disturbance rejection controller based time-varying formation tracking for second-order multi-agent systems with external disturbances. IEEE Access 2019, 7, 153317–153326. [Google Scholar] [CrossRef]
- Mi, Y.; Song, Y.; Fu, Y.; Wang, C. The adaptive sliding mode reactive power control strategy for wind–diesel power system based on sliding mode observer. IEEE Trans. Sustain. Energy 2019, 11, 2241–2251. [Google Scholar] [CrossRef]
- Deng, H.; Li, Q.; Chen, W.; Zhang, G. High-Order Sliding Mode Observer Based OER Control for PEM Fuel Cell Air-Feed System. IEEE Trans. Energy Convers. 2017, 33, 232–244. [Google Scholar] [CrossRef]
- Guo, X.; Huang, S.; Lu, K.; Peng, Y.; Wang, H.; Yang, J. A fast sliding mode speed controller for pmsm based on new compound reaching law with improved sliding mode observer. IEEE Trans. Transp. Electrif. 2022, 9, 2955–2968. [Google Scholar] [CrossRef]
- Xudong, L.; Ke, L.; Qi, Z.; Chenghui, Z. Single-loop predictive control of permanent magnet synchronous motor based on nonlinear disturbance observe. In Proceedings of the Chinese Society of Electrical Engineering, Guangzhou, China, 6–9 November 2018; Volume 38, pp. 2153–2162+2230. [Google Scholar]
- Fang, H.; Duan, X.; Yang, Y.; Wang, Y.; Luo, G. Deadbeat Control of Permanent Magnet Synchronous Motor Based on MRAS Parameter Identification. In Proceedings of the 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 24–27 November 2020. [Google Scholar]
- Wu, S.; Shi, J.; Li, Z. Research on Deadbeat Predictive Current Control of PMSM Based on ESO. Electr. Drive 2021, 51, 22–28. [Google Scholar]
- Chen, J.; Fan, Y.; Chen, Q. Model-free deadbeat predictive current control of NIPMVMs considering dead-time effect. J. Power Electron. 2024, 1–9. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Rated Power | 800 | w |
Rated Speed | 400 | rpm |
Rated Torque | 5 | Nm |
Rated Voltage | 200 | V |
Rated Current | 4 | A |
Resistance | 0.07 | Ω |
d-axis Inductance | 0.625 | mH |
q-axis Inductance | 0.625 | mH |
Flux | 0.1875 | Wb |
Pole Pairs | 5 | - |
Inertia | 0.0008 | Kg·m2 |
Sampling Frequency | 10 | kHz |
Sliding Mode Gain | 300 | |
LPF Cut-off Frequency | 2000 | Hz |
ESO Parameters | β1 = 1.5, β2 = 700 | |
AO Parameters | αc = 1 |
Schemes | Response Time at Increasing | Response Time at Decreasing |
---|---|---|
SMO-DPCC | 0.111 s | 0.3871 s |
ESO-DPCC | 0.16 s | 0.889 s |
AO-DPCC | 0.36 s | 0.602 s |
Schemes | Response Time at Increasing | Response Time at Decreasing |
---|---|---|
SMO-DPCC | 0.16 s | 0.7911 s |
ESO-DPCC | 0.3901 s | 1.0321 s |
AO-DPCC | 0.6511 s | 1.8731 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xu, Q.; Wang, Y. A New Sliding-Mode Observer-Based Deadbeat Predictive Current Control Method for Permanent Magnet Motor Drive. Machines 2024, 12, 297. https://doi.org/10.3390/machines12050297
Zhang Z, Xu Q, Wang Y. A New Sliding-Mode Observer-Based Deadbeat Predictive Current Control Method for Permanent Magnet Motor Drive. Machines. 2024; 12(5):297. https://doi.org/10.3390/machines12050297
Chicago/Turabian StyleZhang, Zixuan, Qiangren Xu, and Yicheng Wang. 2024. "A New Sliding-Mode Observer-Based Deadbeat Predictive Current Control Method for Permanent Magnet Motor Drive" Machines 12, no. 5: 297. https://doi.org/10.3390/machines12050297
APA StyleZhang, Z., Xu, Q., & Wang, Y. (2024). A New Sliding-Mode Observer-Based Deadbeat Predictive Current Control Method for Permanent Magnet Motor Drive. Machines, 12(5), 297. https://doi.org/10.3390/machines12050297