Fault Diagnosis in Induction Motors through Infrared Thermal Images Using Convolutional Neural Network Feature Extraction
Abstract
:1. Introduction
2. Proposed Methodology
2.1. Dataset Description
2.2. Data Augmentation
2.3. Feature Extraction Using Convolutional Neural Network
2.4. Decision Tree Classifier
3. Results and Discussion
3.1. Evaluation Metrics
3.2. Hyperparameter Tuning
3.3. Feature Extraction
3.4. Results
3.5. Model Comparison
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. CNN Training
Training Function |
---|
def trainig_step(data, model): X, y = data predictions, _ = model(X) loss = loss_fn(predictions, y) loss.backward() gradients = [v.value.grad for v in trainable_weights] optimizer.apply(gradients, trainable_weights) accuracy.update_state(y, predictions) loss_mean.update_state(loss) return accuracy, loss_mean |
- The batch data are divided into samples and targets according to variables X and y;
- The CNN model is evaluated using the samples (X) to obtain the predictions. Note that the “_” symbol represents the second output. This output contains the features in the CNN model, and it is not used in the weight adjustment;
- The predictions are used with the loss functions and the optimizer to adjust the CNN weights;
- The average loss and accuracy are calculated to obtain a perspective on the advanced training.
References
- Lee, S.B.; Stone, G.C.; Antonino-Daviu, J.; Gyftakis, K.N.; Strangas, E.G.; Maussion, P.; Platero, C.A. Condition Monitoring of Industrial Electric Machines: State of the Art and Future Challenges. IEEE Ind. Electron. Mag. 2020, 14, 158–167. [Google Scholar] [CrossRef]
- Gangsar, P.; Tiwari, R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mech. Syst. Signal Process. 2020, 144, 106908. [Google Scholar] [CrossRef]
- Bramerdorfer, G.; Lei, G.; Cavagnino, A.; Zhang, Y.; Sykulski, J.; Lowther, D.A. More Robust and Reliable Optimized Energy Conversion Facilitated through Electric Machines, Power Electronics and Drives, and Their Control: State-of-the-Art and Trends. IEEE Trans. Energy Convers. 2020, 35, 1997–2012. [Google Scholar] [CrossRef]
- Gyftakis, K.N.; Spyropoulos, D.V.; Mitronikas, E.D. Advanced Detection of Rotor Electrical Faults in Induction Motors at Start-Up. IEEE Trans. Energy Convers. 2021, 36, 1101–1109. [Google Scholar] [CrossRef]
- de Jesús Rangel-Magdaleno, J. Induction Machines Fault Detection: An Overview. IEEE Instrum. Meas. Mag. 2021, 24, 63–71. [Google Scholar] [CrossRef]
- Benbouzid, M.; Berghout, T.; Sarma, N.; Djurović, S.; Wu, Y.; Ma, X. Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies 2021, 14, 5967. [Google Scholar] [CrossRef]
- He, J.H.; Liu, D.P.; Chung, C.H.; Huang, H.H. Infrared Thermography Measurement for Vibration-Based Structural Health Monitoring in Low-Visibility Harsh Environments. Sensors 2020, 20, 7067. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Z.; Shabbir, M.N.S.K.; Liang, X.; Zhang, Y.; Hu, T. Machine Learning-Based Fault Diagnosis for Single- and Multi-Faults in Induction Motors Using Measured Stator Currents and Vibration Signals. IEEE Trans. Ind. Appl. 2019, 55, 2378–2391. [Google Scholar] [CrossRef]
- Choudhary, A.; Goyal, D.; Letha, S.S. Infrared Thermography-Based Fault Diagnosis of Induction Motor Bearings Using Machine Learning. IEEE Sens. J. 2021, 21, 1727–1734. [Google Scholar] [CrossRef]
- Aviña-Corral, V.; Rangel-Magdaleno, J.; Morales-Perez, C.; Hernandez, J. Bearing Fault Detection in Adjustable Speed Drive-Powered Induction Machine by Using Motor Current Signature Analysis and Goodness-of-Fit Tests. IEEE Trans. Ind. Inform. 2021, 17, 8265–8274. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, Z.; Vong, C.M.; Pecht, M. A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images. IEEE Access 2019, 7, 12348–12359. [Google Scholar] [CrossRef]
- Shao, H.; Xia, M.; Han, G.; Zhang, Y.; Wan, J. Intelligent Fault Diagnosis of Rotor-Bearing System Under Varying Working Conditions With Modified Transfer Convolutional Neural Network and Thermal Images. IEEE Trans. Ind. Inform. 2021, 17, 3488–3496. [Google Scholar] [CrossRef]
- Choudhary, A.; Mian, T.; Fatima, S. Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images. Measurement 2021, 176, 109196. [Google Scholar] [CrossRef]
- Huda, A.N.; Taib, S. Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment. Appl. Therm. Eng. 2013, 61, 220–227. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Huda, A.; Mat Isa, N.A. Recursive construction of output-context fuzzy systems for the condition monitoring of electrical hotspots based on infrared thermography. Eng. Appl. Artif. Intell. 2015, 39, 120–131. [Google Scholar] [CrossRef]
- Karvelis, P.; Georgoulas, G.; Stylios, C.D.; Tsoumas, I.P.; Antonino-Daviu, J.A.; Picazo Rodenas, M.J.; Climente-Alarcón, V. An automated thermographic image segmentation method for induction motor fault diagnosis. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 3396–3402. [Google Scholar] [CrossRef]
- Khanjani, M.; Ezoji, M. Electrical fault detection in three-phase induction motor using deep network-based features of thermograms. Measurement 2021, 173, 108622. [Google Scholar] [CrossRef]
- Garcia-Ramirez, A.G.; Morales-Hernandez, L.A.; Osornio-Rios, R.A.; Benitez-Rangel, J.P.; Garcia-Perez, A.; de Jesus Romero-Troncoso, R. Fault detection in induction motors and the impact on the kinematic chain through thermographic analysis. Electr. Power Syst. Res. 2014, 114, 1–9. [Google Scholar] [CrossRef]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear Discriminant Analysis. In Robust Data Mining; Springer: New York, NY, USA, 2013; pp. 27–33. [Google Scholar] [CrossRef]
- Huda, A.; Taib, S.; Ghazali, K.; Jadin, M. A new thermographic NDT for condition monitoring of electrical components using ANN with confidence level analysis. ISA Trans. 2014, 53, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Laurentys Almeida, C.A.; Braga, A.P.; Nascimento, S.; Paiva, V.; Martins, H.J.A.; Torres, R.; Caminhas, W.M. Intelligent Thermographic Diagnostic Applied to Surge Arresters: A New Approach. IEEE Trans. Power Deliv. 2009, 24, 751–757. [Google Scholar] [CrossRef]
- Najafi, M.; Baleghi, Y.; Gholamian, S.A.; Mehdi Mirimani, S. Fault Diagnosis of Electrical Equipment through Thermal Imaging and Interpretable Machine Learning Applied on a Newly-introduced Dataset. In Proceedings of the 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Mashhad, Iran, 23–24 December 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Najafi, M.; Baleghi, Y.; Mirimani, S.M. Thermal Image of Equipment (Induction Motor) + 40 Ground Truths Added. Mendeley Data, V3. 2023. Available online: https://data.mendeley.com/datasets/m4sbt8hbvk/3 (accessed on 20 July 2024).
- Sun, Y.; Zhang, H.; Zhao, T.; Zou, Z.; Shen, B.; Yang, L. A New Convolutional Neural Network with Random Forest Method for Hydrogen Sensor Fault Diagnosis. IEEE Access 2020, 8, 85421–85430. [Google Scholar] [CrossRef]
- Aili Wang, Y.W.; Chen, Y. Hyperspectral image classification based on convolutional neural network and random forest. Remote Sens. Lett. 2019, 10, 1086–1094. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Song, Y.; Rong, X. Facial Expression Recognition Based on Random Forest and Convolutional Neural Network. Information 2019, 10, 375. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data augmentation: A comprehensive survey of modern approaches. Array 2022, 16, 100258. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Computer Vision—ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 630–645. [Google Scholar]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Christlein, V.; Spranger, L.; Seuret, M.; Nicolaou, A.; Král, P.; Maier, A. Deep Generalized Max Pooling. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019; 2019; pp. 1090–1096. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic ReLU. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 351–367. [Google Scholar]
- Baldi, P.; Sadowski, P.J. Understanding Dropout. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013; Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K., Eds.; Curran Associates, Inc.: Sydney, NSW, Australia, 2013; Volume 26. [Google Scholar]
- Ding, B.; Qian, H.; Zhou, J. Activation functions and their characteristics in deep neural networks. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 1836–1841. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
- Pasupa, K.; Sunhem, W. A comparison between shallow and deep architecture classifiers on small dataset. In Proceedings of the 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 5–6 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Harsh, H.; Patel, P.P. Study and Analysis of Decision Tree Based Classification Algorithms. Int. J. Comput. Sci. Eng. 2018, 6, 74–78. [Google Scholar] [CrossRef]
- Tran, M.Q.; Elsisi, M.; Mahmoud, K.; Liu, M.K.; Lehtonen, M.; Darwish, M.M.F. Experimental Setup for Online Fault Diagnosis of Induction Machines via Promising IoT and Machine Learning: Towards Industry 4.0 Empowerment. IEEE Access 2021, 9, 115429–115441. [Google Scholar] [CrossRef]
- Kirchgässner, W.; Wallscheid, O.; Böcker, J. Data-Driven Permanent Magnet Temperature Estimation in Synchronous Motors with Supervised Machine Learning: A Benchmark. IEEE Trans. Energy Convers. 2021, 36, 2059–2067. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Imambi, S.; Prakash, K.B.; Kanagachidambaresan, G.R. PyTorch. In Programming with TensorFlow: Solution for Edge Computing Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 87–104. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Janssens, O.; Schulz, R.; Slavkovikj, V.; Stockman, K.; Loccufier, M.; Van de Walle, R.; Van Hoecke, S. Thermal image based fault diagnosis for rotating machinery. Infrared Phys. Technol. 2015, 73, 78–87. [Google Scholar] [CrossRef]
- Lozanov, Y.; Tzvetkova, S.; Petleshkov, A. Use of machine learning techniques for classification of thermographic images. In Proceedings of the 2020 12th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 9–12 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- BV, C.; Ananthan, T. Machine Learning Based Fault Detection in Induction Motor using Thermal Imaging. In Proceedings of the 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 17–19 August 2022; pp. 929–936. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Diagnostics of stator faults of the single-phase induction motor using thermal images, MoASoS and selected classifiers. Measurement 2016, 93, 86–93. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Fu, Q.; Kou, R.; Huang, F.; Yang, B.; Yang, T.; Gao, M. Techniques and Challenges of Image Segmentation: A Review. Electronics 2023, 12, 1199. [Google Scholar] [CrossRef]
- Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Tran, V.T.; Yang, B.S.; Gu, F.; Ball, A. Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2013, 38, 601–614. [Google Scholar] [CrossRef]
- Bai, T.; Zhang, L.; Duan, L.; Wang, J. NSCT-Based Infrared Image Enhancement Method for Rotating Machinery Fault Diagnosis. IEEE Trans. Instrum. Meas. 2016, 65, 2293–2301. [Google Scholar] [CrossRef]
Class | Images | Dimensions | Format |
---|---|---|---|
Cooling | 28 | 360 × 240 × 3 | BMP |
Rotor | 30 | 360 × 240 × 3 | BMP |
50% stator 2-phase | 38 | 360 × 240 × 3 | BMP |
50% stator 1-phase | 35 | 360 × 240 × 3 | BMP |
30% stator 3-phase | 42 | 360 × 240 × 3 | BMP |
30% stator 2-phase | 38 | 360 × 240 × 3 | BMP |
30% stator 1-phase | 37 | 360 × 240 × 3 | BMP |
10% stator 3-phase | 31 | 360 × 240 × 3 | BMP |
10% stator 2-phase | 31 | 360 × 240 × 3 | BMP |
10% stator 1-phase | 34 | 360 × 240 × 3 | BMP |
Healthy | 25 | 360 × 240 × 3 | BMP |
Total | 369 | - | - |
Dataset/Class | Training Set | Testing Set | Total |
---|---|---|---|
Rotor | 33 | 9 | 42 |
Healthy | 34 | 8 | 42 |
10%-stator 3-phase | 34 | 8 | 42 |
50%-stator 1-phase | 33 | 9 | 42 |
50%-stator 2-phase | 34 | 8 | 42 |
30%-stator 2-phase | 33 | 9 | 42 |
10%-stator 2-phase | 34 | 8 | 42 |
10%-stator 1-phase | 33 | 9 | 42 |
30%-stator 3-phase | 34 | 8 | 42 |
30%-stator 1-phase | 34 | 8 | 42 |
Cooling | 33 | 9 | 42 |
Total | 369 | 93 | 462 |
Model | Hyperparameters | Values | Activation Function |
---|---|---|---|
Model 1 | Convolutional layer kernel size | 16, 32, 64, 64, 128 | ReLU |
Dense layer size | 128, 11 | ReLU, Softmax | |
Dropout rate | 0.2 | - | |
Learning rate | 0.01 | - | |
Model 2 | Convolutional layer kernel size | 16, 16, 32, 64, 128 | ReLU |
Dense layer size | 256, 11 | ReLU, Softmax | |
Dropout rate | 0.3 | - | |
Learning rate | 0.01 | - |
Hyperparameter | Optimal Values |
---|---|
Learning rate | 0.001 |
Dropout rate | 0.5 |
Convolutional layer kernel size | 32, 32, 64, 128, 256 |
Dense layer size | 512, 11 |
Model Parameter | Value |
---|---|
Max deepth | 7 |
Decision | Gini |
Min samples to split | 2 |
Splitter | Best |
Class | Accuracy % | Precision % | Recall % | F1 Score % |
---|---|---|---|---|
Rotor | 100 | 100 | 100 | 100 |
Healthy | 100 | 89 | 100 | 94 |
10%-stator 3-phase | 100 | 100 | 100 | 100 |
50%-stator 1-phase | 100 | 100 | 100 | 95 |
50%-stator 2-phase | 88.84 | 90 | 89 | 94 |
30%-stator 2-phase | 100 | 100 | 100 | 100 |
10%-stator 2-phase | 100 | 100 | 100 | 100 |
10%-stator 1-phase | 100 | 100 | 100 | 100 |
30%-stator 3-phase | 100 | 100 | 100 | 100 |
30%-stator 1-phase | 87.53 | 100 | 88 | 93 |
Cooling | 100 | 100 | 100 | 100 |
Average | 98.0 | 98.0 | 98.0 | 98.0 |
Works | Methods | Classes | Accuracy % | Precision % | Recall % | F1 Score % |
---|---|---|---|---|---|---|
Huda et al. [14] | Statistical features and NN | 2 | 82.4 | 81.1 | 84.6 | 82.8 |
Tran et al. [49] | Image descompostion and RVM | 4 | 100 | - | - | - |
Glowacz et al. [46] | Image segmentation and NN | 3 | 100 | - | - | - |
Bai et al. [50] | Image enhancement and NN | 6 | 92.5 | - | - | - |
Janssens et al. [43] | Statistical features and SVM | 8 | 88.2 | 90.6 | 88.2 | 89.5 |
Lozanov et al. [44] | Statistical features and SVM | 3 | 83.3 | - | - | - |
Karvelis et al. [16] | Image segmentation and ML | 5 | 91.4 | 89.7 | 90.2 | 90.4 |
Charitha et al. [45] | Statistical features and RF | 6 | 97.2 | - | - | - |
Najafi et al. [22] | Image segmentation and RF | 11 | 93.8 | 92.1 | 93.2 | 92.6 |
Proposed | CNN feature extraction and DT | 11 | 98.0 | 98.0 | 98.0 | 98.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderon-Uribe, U.; Lizarraga-Morales, R.A.; Guryev, I.V. Fault Diagnosis in Induction Motors through Infrared Thermal Images Using Convolutional Neural Network Feature Extraction. Machines 2024, 12, 497. https://doi.org/10.3390/machines12080497
Calderon-Uribe U, Lizarraga-Morales RA, Guryev IV. Fault Diagnosis in Induction Motors through Infrared Thermal Images Using Convolutional Neural Network Feature Extraction. Machines. 2024; 12(8):497. https://doi.org/10.3390/machines12080497
Chicago/Turabian StyleCalderon-Uribe, Uriel, Rocio A. Lizarraga-Morales, and Igor V. Guryev. 2024. "Fault Diagnosis in Induction Motors through Infrared Thermal Images Using Convolutional Neural Network Feature Extraction" Machines 12, no. 8: 497. https://doi.org/10.3390/machines12080497
APA StyleCalderon-Uribe, U., Lizarraga-Morales, R. A., & Guryev, I. V. (2024). Fault Diagnosis in Induction Motors through Infrared Thermal Images Using Convolutional Neural Network Feature Extraction. Machines, 12(8), 497. https://doi.org/10.3390/machines12080497