Editorial for Special Issue “10th Anniversary of Machines—Feature Papers in Fault Diagnosis and Prognosis”
Conflicts of Interest
References
- Almutairi, K.M.; Sinha, J.K. Experimental Vibration Data in Fault Diagnosis: A Machine Learning Approach to Robust Classification of Rotor and Bearing Defects in Rotating Machines. Machines 2023, 11, 943. [Google Scholar] [CrossRef]
- Afridi, Y.S.; Hasan, L.; Ullah, R.; Ahmad, Z.; Kim, J.-M. LSTM-Based Condition Monitoring and Fault Prognostics of Rolling Element Bearings Using Raw Vibrational Data. Machines 2023, 11, 531. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, Y.; Su, S.; Fang, X.; Wang, T. Euler Representation-Based Structural Balance Discriminant Projection for Machinery Fault Diagnosis. Machines 2023, 11, 307. [Google Scholar] [CrossRef]
- Tang, S.; Wang, C.; Zhou, F.; Hu, X.; Wang, T. Multi-Scale Recursive Semi-Supervised Deep Learning Fault Diagnosis Method with Attention Gate. Machines 2023, 11, 153. [Google Scholar] [CrossRef]
- Su, H.; Wang, Z.; Cai, Y.; Ding, J.; Wang, X.; Yao, L. Refined Composite Multiscale Fluctuation Dispersion Entropy and Supervised Manifold Mapping for Planetary Gearbox Fault Diagnosis. Machines 2023, 11, 47. [Google Scholar] [CrossRef]
- Maliuk, A.S.; Ahmad, Z.; Kim, J.-M. Hybrid Feature Selection Framework for Bearing Fault Diagnosis Based on Wrapper-WPT. Machines 2022, 10, 1204. [Google Scholar] [CrossRef]
- Tayyab, S.M.; Chatterton, S.; Pennacchi, P. Image-Processing-Based Intelligent Defect Diagnosis of Rolling Element Bearings Using Spectrogram Images. Machines 2022, 10, 908. [Google Scholar] [CrossRef]
- Viale, L.; Daga, A.P.; Fasana, A.; Garibaldi, L. From Novelty Detection to a Genetic Algorithm Optimized Classification for the Diagnosis of a SCADA-Equipped Complex Machine. Machines 2022, 10, 270. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, Y.; Li, S.; Song, Z.; Hu, Z.; Liu, F. Multi-Sensor Data Driven with PARAFAC-IPSO-PNN for Identification of Mechanical Nonstationary Multi-Fault Mode. Machines 2022, 10, 155. [Google Scholar] [CrossRef]
- Ahmed, H.O.A.; Nandi, A.K. Vibration Image Representations for Fault Diagnosis of Rotating Machines: A Review. Machines 2022, 10, 1113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, J. Editorial for Special Issue “10th Anniversary of Machines—Feature Papers in Fault Diagnosis and Prognosis”. Machines 2024, 12, 606. https://doi.org/10.3390/machines12090606
Li X, Liu J. Editorial for Special Issue “10th Anniversary of Machines—Feature Papers in Fault Diagnosis and Prognosis”. Machines. 2024; 12(9):606. https://doi.org/10.3390/machines12090606
Chicago/Turabian StyleLi, Xiang, and Jie Liu. 2024. "Editorial for Special Issue “10th Anniversary of Machines—Feature Papers in Fault Diagnosis and Prognosis”" Machines 12, no. 9: 606. https://doi.org/10.3390/machines12090606
APA StyleLi, X., & Liu, J. (2024). Editorial for Special Issue “10th Anniversary of Machines—Feature Papers in Fault Diagnosis and Prognosis”. Machines, 12(9), 606. https://doi.org/10.3390/machines12090606