Predictive Analysis of Crack Growth in Bearings via Neural Networks
Abstract
:1. Introduction
- This research work successfully developed a practical artificial neural network (ANN) model capable of predicting crack area and width in a bearing with a seeded crack.
- The model utilizes key parameters like RMS, crest factor, SNR, skewness, kurtosis, and Shannon entropy, reflecting the practical application of these metrics in bearing condition monitoring.
- This study highlights the significant influence of SNR on predicting crack propagation when using it as a single input parameter.
- The combination of kurtosis and Shannon entropy achieved an even higher accuracy, demonstrating the potential for enhancing predictive performance through the integration of multiple parameters.
- This study validates the use of ANN models for predicting crack propagation in bearings, showcasing their ability to achieve high accuracy in real-world applications.
2. Research Methodology
2.1. Data Extraction
2.2. Application of Neural Network
3. Results and Discussion
3.1. Single Parameters
Root Mean Square (RMS)
3.2. Multiple Parameters
3.2.1. RMS and Crest Factor
3.2.2. RMS and SNR
3.2.3. RMS and Skewness
3.2.4. RMS and Kurtosis
3.2.5. RMS and Shannon Entropy
3.2.6. Remaining Combinations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Shi, H.; Bai, X.; Zhang, K.; Bin, G. Experimental analysis and modeling of subsurface cracks with random propagation for ceramic material on rolling contact fatigue. Eng. Fail. Anal. 2024, 155, 107753. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z. A peridynamic model for structural fatigue crack propagation analysis under spectrum loadings. Int. J. Fatigue 2024, 181, 108129. [Google Scholar] [CrossRef]
- Jackson, M.J.; Deng, Z.; Huang, T.; Wei, X.; Huang, H.; Wang, H. Research on Multi-Directional Spalling Evolution Analysis Method for Angular Ball Bearing. Appl. Sci. 2024, 14, 5072. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D.; Zhang, Y.; Xu, L.; Wang, J.; Han, E.H. Formation Mechanisms and Crack Propagation Behaviors of White Etching Layers and Brown Etching Layers on Raceways of Failure Bearings. Lubricants 2024, 12, 59. [Google Scholar] [CrossRef]
- Bu, J.; Sun, J.; Gao, X.; Su, C.; Du, S. Wear Failure Analysis of Ball Bearings with Artificial Pits for Gas Turbines. J. Fail. Anal. Prev. 2024, 24, 1365–1375. [Google Scholar] [CrossRef]
- Wei, X.; Li, X. Early failure analysis of automobile generator bearing. Eng. Fail. Anal. 2024, 159, 108124. [Google Scholar] [CrossRef]
- Jiang, S.; Du, J.; Wang, S.; Li, C. Simulation and Experimental Study on Crack Propagation in Slewing Bearing Steel. J. Tribol. 2024, 146, 064301. [Google Scholar] [CrossRef]
- Prasad, D.K.; Amarnath, M.; Chelladurai, H.; Santhosh Kumar, K. Assessing the fatigue wear effect on traction coefficient and dynamic performance of roller bearing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 238, 595–614. [Google Scholar] [CrossRef]
- Nasar, R.A.; AL-Shudeifat, M.A. Numerical and experimental analysis on the whirl orbit with inner loop in cracked rotor system. J. Sound Vib. 2024, 584, 118449. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, C.; Hu, H.; Ma, H.; Yuan, K.; Li, X.; Zhao, X.; Peng, Z. Dynamic characteristics of spur gear system with tooth root crack considering gearbox flexibility. Mech. Syst. Signal Process. 2024, 208, 110966. [Google Scholar] [CrossRef]
- Manjunatha, C.M.; Malipatil, S.G.; Nagarajappa, N.; Majila, A.N.; Fernando, D.C.; Bojja, R.; Jagannathan, N.; Manjuprasad, M. Experimental, Analytical, and Computational Studies on the Fatigue Crack Growth Behavior of a Titanium Alloy under Cold-Turbistan Spectrum Loads. J. Test. Eval. 2024, 52, 931–946. [Google Scholar] [CrossRef]
- Mahapatra, S.; Mohanty, A.R. A novel semi-analytical method for fillet foundation deflection calculation in presence of a tooth crack propagating into the rim of a spur gear. Eng. Fail. Anal. 2024, 163, 108482. [Google Scholar] [CrossRef]
- Bovsunovsky, A.; Chernousenko, O. Estimation of Fatigue Crack Growth at Transverse Vibrations of a Steam Turbine Shaft. J. Vib. Eng. Technol. 2024, 12, 711–718. [Google Scholar] [CrossRef]
- Poursaeidi, E.; Javadi Sigaroodi, M.; Aieneravaie, M. Failure investigation of fatigue crack initiation and propagation in compressor blade. Eng. Fail. Anal. 2024, 162, 108370. [Google Scholar] [CrossRef]
- Ansari, A.K.; Kumar, P. Vibration and Acoustics Analyses of Tapered Roller Bearing. J. Vib. Eng. Technol. 2024, 12, 2467–2484. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, Y.; Fan, M.; Xiao, Z. Numerical Simulation and ANN Prediction of Crack Problems within Corrosion Defects. Materials 2024, 17, 3237. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wei, Z.; Zhao, J.; Wang, Y.; Liang, X.; Pei, X. Remaining useful life prediction of pipelines considering the crack coupling effect using genetic algorithm-back propagation neural network. Thin-Walled Struct. 2024, 204, 112330. [Google Scholar] [CrossRef]
- Parsania, A.; Kakavand, E.; Hosseini, S.A.; Parsania, A. Estimation of multiple cracks interaction and its effect on stress intensity factors under mixed load by artificial neural networks. Theor. Appl. Fract. Mech. 2024, 131, 104340. [Google Scholar] [CrossRef]
- Leaman, F.; Vicuña, C.; Clausen, E. Experimental Investigation of Crack Detection in Ring Gears of Wind Turbine Gearboxes Using Acoustic Emissions. J. Vib. Eng. Technol. 2024, 12, 2111–2128. [Google Scholar] [CrossRef]
- Gangwar, M.K.; Sahu, N.K.; Shukla, R.K.; Nayak, C. Machine learning based progressive crack fault monitoring on spur gear using vibration analysis. Int. J. Veh. Noise Vib. 2024, 20, 89–106. [Google Scholar] [CrossRef]
- Hao, M.; Chang, W.; Xu, C. Failure modes determination and load-bearing capacity evaluation of concrete columns under seismic loads by ANNs. Soft Comput. 2024, 28, 8361–8377. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, Y.; Liu, Y. Crack propagation simulation and overload fatigue life prediction via enhanced physics-informed neural networks. Int. J. Fatigue 2024, 186, 108382. [Google Scholar] [CrossRef]
- Shoor, S.; Gopaluni, D.T.; Tamang, W.; Prasad, P.; Singh, H.; Singh, M. Analysis of Crack Dimensions During Crack Propagation Using Neural Network. In International Conference on Production and Industrial Engineering; Springer Nature: Singapore, 2024; pp. 209–226. [Google Scholar] [CrossRef]
- Min, B.; Zhang, X.; Zhang, C.; Zhang, X. Prediction of bearing capacity of cracked asymmetrical double-arch tunnels using the artificial neural networks. Eng. Fail. Anal. 2024, 156, 107805. [Google Scholar] [CrossRef]
- Li, D.; Nie, J.H.; Wang, H.; Ren, W.X. Loading condition monitoring of high-strength bolt connections based on physics-guided deep learning of acoustic emission data. Mech. Syst. Signal Process. 2024, 206, 110908. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.; Zhou, H.; Zhang, H.; Huang, G. Development of machine learning methods for mechanical problems associated with fibre composite materials: A review. Compos. Commun. 2024, 49, 101988. [Google Scholar] [CrossRef]
- Sahu, D.; Dewangan, R.K.; Matharu, S.P.S. Fault Diagnosis of Rolling Element Bearing with Operationally Developed Defects Using Various Convolutional Neural Networks. J. Fail. Anal. Prev. 2024, 24, 1310–1323. [Google Scholar] [CrossRef]
- Sahu, D.; Dewangan, R.K.; Matharu, S.P.S. An Investigation of Fault Detection Techniques in Rolling Element Bearing. J. Vib. Eng. Technol. 2024, 12, 5585–5608. [Google Scholar] [CrossRef]
- Mutra, R.R.; Srinivas, J.; Reddy, D.M.; Rani, M.N.A.; Yunus, M.A.; Yahya, Z. Dynamic and stability comparison analysis of the high-speed turbocharger rotor system with and without thrust bearing via machine learning schemes. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 1–21. [Google Scholar] [CrossRef]
- Rivas, A.; Delipei, G.K.; Davis, I.; Bhongale, S.; Yang, J.; Hou, J. A component diagnostic and prognostic framework for pump bearings based on deep learning with data augmentation. Reliab. Eng. Syst. Saf. 2024, 247, 110121. [Google Scholar] [CrossRef]
- Karyofyllas, G.; Giagopoulos, D. Condition monitoring framework for damage identification in CFRP rotating shafts using Model-Driven Machine learning techniques. Eng. Fail. Anal. 2024, 158, 108052. [Google Scholar] [CrossRef]
- Seo, H.W.; Han, J.S. Deep learning approach for predicting crack initiation position and size in a steam turbine blade using frequency response and model order reduction. J. Mech. Sci. Technol. 2024, 38, 1971–1984. [Google Scholar] [CrossRef]
Time Duration in Hours | RMS (m/s2) | Crest Factor | SNR | Skewness | Kurtosis | Shannon Entropy (107) | Input Variables | |
---|---|---|---|---|---|---|---|---|
Total Area (mm2) | Width (mm) | |||||||
0 | 8.347 | 7.1256 | 22.98 | 0.189 | 5.554 | 2.42 | 24.86 | 1.82 |
10 | 10.22 | 6.8215 | 20.77 | 0.168 | 6.492 | 3.59 | 24.86 | 1.82 |
20 | 8.087 | 6.2457 | 22.33 | 0.208 | 5.527 | 2.02 | 24.86 | 1.82 |
30 | 8.472 | 8.0384 | 21.7 | 0.184 | 5.749 | 2.27 | 24.86 | 1.82 |
40 | 8.485 | 7.0794 | 22.46 | 0.22 | 5.626 | 2.27 | 24.86 | 1.82 |
50 | 8.448 | 8.2828 | 20.71 | 0.228 | 5.913 | 2.26 | 24.8625 | 1.82 |
60 | 8.456 | 7.3888 | 23.4 | 0.229 | 5.549 | 2.26 | 24.865 | 1.82 |
70 | 8.449 | 6.5549 | 20.99 | 0.223 | 5.618 | 2.25 | 24.8675 | 1.82 |
80 | 8.365 | 7.2492 | 23.45 | 0.223 | 5.542 | 2.19 | 24.96 | 1.82 |
90 | 8.308 | 6.418 | 22.34 | 0.221 | 5.603 | 2.17 | 24.96 | 1.8286 |
100 | 8.251 | 7.0285 | 21.54 | 0.216 | 5.752 | 2.13 | 24.96 | 1.8373 |
120 | 8.3 | 6.4237 | 22.2 | 0.218 | 5.679 | 2.16 | 25.36 | 1.895 |
140 | 8.601 | 6.7204 | 21.8 | 0.225 | 6.147 | 2.37 | 25.56 | 1.92 |
160 | 9.264 | 6.8881 | 20.35 | 0.168 | 5.521 | 2.8 | 26.0445 | 2.1 |
170 | 8.79 | 6.0588 | 20.29 | 0.18 | 5.728 | 2.48 | 26.4586 | 2.4766 |
180 | 7.68 | 13.357 | 23.6 | 0.119 | 8.537 | 2.03 | 26.978 | 3.1198 |
184 | 16.9 | 11.788 | 24.1 | 0.07 | 7.43 | 13.9 | 27.609 | 3.2798 |
188 | 8.1 | 14.3845 | 22.1 | 0.17 | 9.53 | 2.07 | 27.987 | 3.4399 |
192 | 7.97 | 11.439 | 22.9 | 0.04 | 7.67 | 1.98 | 28.275 | 3.6975 |
196 | 8.24 | 14.1009 | 24 | 0.11 | 11.6 | 2.19 | 28.345 | 4.0525 |
200 | 25.02 | 10.2382 | 19.67 | 0.129 | 7.312 | 30.7 | 28.778 | 4.867 |
204 | 22 | 9.5045 | 19.4 | 0.09 | 7.53 | 28 | 28.835 | 5.16 |
208 | 25.4 | 9.4644 | 22.4 | 0.11 | 7.15 | 20 | 28.892 | 5.4545 |
212 | 25.7 | 12.754 | 19.5 | 0.16 | 8.63 | 26 | 28.949 | 5.7482 |
216 | 24.9 | 8.8966 | 18.18 | 0.178 | 8.017 | 30.5 | 29.007 | 6.042 |
220 | 13.8 | 9.1122 | 24.3 | 0.12 | 7.09 | 7.27 | 28.885 | 7.0116 |
224 | 16 | 10.0815 | 21.2 | 0.16 | 7.63 | 15.2 | 28.945 | 7.0983 |
229 | 15.28 | 11.0412 | 23.31 | 0.078 | 8.1 | 10.2 | 29.15 | 7.231 |
232 | 19.2 | 11.2517 | 22.5 | 0.26 | 10.2 | 15.9 | 29.172 | 7.341 |
239 | 16.28 | 7.774 | 21.91 | 0.141 | 6.48 | 11.7 | 29.202 | 7.531 |
248 | 19.21 | 9.1612 | 17.67 | 0.151 | 6.135 | 12.2 | 29.324 | 7.761 |
259 | 14.86 | 7.3411 | 18.42 | 0.1707 | 6.824 | 9.58 | 29.556 | 8.631 |
267.5 | 8.723 | 9.1705 | 21.7 | 0.14 | 4.967 | 2.66 | 29.564 | 8.987 |
274.5 | 9.15 | 8.3301 | 19.51 | 0.041 | 6.653 | 3.06 | 31.019 | 9.362 |
278.5 | 9.178 | 9.6329 | 21.2 | 0.115 | 6.682 | 13.26 | 33.372 | 9.761 |
284.5 | 9.603 | 10.247 | 19.47 | 0.014 | 7.288 | 3.09 | 36.518 | 10.401 |
285 | 9.114 | 10.4396 | 19.35 | 0.009 | 7.954 | 2.74 | 40.157 | 10.967 |
Input Parameters | Actual/Target Values | Predicted Values | Accuracy (in %) | |||
---|---|---|---|---|---|---|
Time Duration | RMS (m/s2) | Total Area (mm2) | Width (mm) | Total Area (mm2) | Width (mm) | |
0 | 8.347 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
10 | 10.22 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
20 | 8.087 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
30 | 8.472 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
40 | 8.485 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
50 | 8.448 | 24.8625 | 1.82 | 24.8601 | 1.82 | 100.0% |
60 | 8.456 | 24.865 | 1.82 | 24.8604 | 1.82 | 100.0% |
70 | 8.449 | 24.8675 | 1.82 | 24.8619 | 1.8200 | 100.0% |
80 | 8.365 | 24.96 | 1.82 | 24.8708 | 1.8200 | 99.8% |
90 | 8.308 | 24.96 | 1.8286 | 24.9076 | 1.8202 | 99.7% |
100 | 8.251 | 24.96 | 1.8373 | 25.0026 | 1.8249 | 99.6% |
120 | 8.3 | 25.36 | 1.8953 | 25.3488 | 1.8787 | 99.5% |
140 | 8.601 | 25.56 | 1.92 | 25.5771 | 1.9401 | 99.4% |
160 | 9.264 | 26.0445 | 2.1 | 26.0410 | 2.0878 | 99.7% |
170 | 8.79 | 26.4586 | 2.4766 | 26.2826 | 2.4391 | 98.9% |
180 | 7.68 | 26.978 | 3.1198 | 27.6182 | 3.0798 | 98.2% |
184 | 16.9 | 27.609 | 3.2798 | 24.8600 | 3.2777 | 94.4% |
188 | 8.1 | 27.987 | 3.4399 | 27.9953 | 3.4596 | 99.7% |
192 | 7.97 | 28.275 | 3.6975 | 28.2749 | 3.6800 | 99.8% |
196 | 8.24 | 28.345 | 4.0525 | 28.1086 | 3.8432 | 96.9% |
200 | 25.02 | 28.778 | 4.867 | 24.86 | 4.8627 | 92.1% |
204 | 22 | 28.83525 | 5.16 | 24.86 | 5.1546 | 92.0% |
208 | 25.4 | 28.8925 | 5.4545 | 24.86 | 5.4346 | 91.7% |
212 | 25.7 | 28.94975 | 5.7482 | 24.86 | 5.7407 | 91.7% |
216 | 24.9 | 29.007 | 6.042 | 24.86 | 6.0431 | 91.6% |
220 | 13.8 | 28.885 | 7.0116 | 24.86 | 6.8938 | 91.1% |
224 | 16 | 28.945 | 7.0983 | 24.86 | 7.0906 | 91.7% |
229 | 15.28 | 29.15 | 7.231 | 24.86 | 7.2384 | 91.3% |
232 | 19.2 | 29.1725 | 7.341 | 24.86 | 7.5194 | 90.1% |
239 | 16.28 | 29.202 | 7.531 | 24.86 | 7.4396 | 90.7% |
248 | 19.21 | 29.324 | 7.761 | 24.86 | 7.7607 | 91.0% |
259 | 14.86 | 29.556 | 8.631 | 24.86 | 8.6296 | 90.5% |
267.5 | 8.723 | 29.564 | 8.987 | 24.86 | 8.9862 | 90.5% |
274.5 | 9.15 | 31.019 | 9.362 | 24.86 | 9.2226 | 86.9% |
278.5 | 9.178 | 33.372 | 9.761 | 24.86 | 9.7644 | 82.9% |
284.5 | 9.603 | 36.518 | 10.401 | 24.86 | 10.3986 | 76.5% |
285 | 9.114 | 40.157 | 10.967 | 24.86 | 10.9600 | 69.2% |
Input Parameters | Actual/Target Values | Predicted Values | Accuracy (in %) | |||
---|---|---|---|---|---|---|
Time Duration | Crest Factor | Total Area (mm2) | Width (mm) | Total Area (mm2) | Width (mm) | |
0 | 7.1256 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
10 | 6.8215 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
20 | 6.2457 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
30 | 8.0384 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
40 | 7.0794 | 24.86 | 1.82 | 24.8600 | 1.82 | 100.0% |
50 | 8.2828 | 24.8625 | 1.82 | 24.8600 | 1.82 | 100.0% |
60 | 7.3888 | 24.865 | 1.82 | 24.8600 | 1.82 | 100.0% |
70 | 6.5549 | 24.8675 | 1.82 | 24.8600 | 1.8200 | 100.0% |
80 | 7.2492 | 24.96 | 1.82 | 24.8600 | 1.8200 | 99.8% |
90 | 6.418 | 24.96 | 1.8286 | 25.6415 | 1.8200 | 98.4% |
100 | 7.0285 | 24.96 | 1.8373 | 24.9593 | 1.8200 | 99.5% |
120 | 6.4237 | 25.36 | 1.8953 | 25.7792 | 1.8200 | 97.1% |
140 | 6.7204 | 25.56 | 1.92 | 25.8987 | 1.8200 | 96.6% |
160 | 6.8881 | 26.0445 | 2.1 | 26.0445 | 1.8200 | 92.3% |
170 | 6.0588 | 26.4586 | 2.4766 | 26.4577 | 1.8200 | 82.0% |
180 | 13.357 | 26.978 | 3.1198 | 24.8600 | 3.1218 | 95.7% |
184 | 11.788 | 27.609 | 3.2798 | 24.8600 | 3.2773 | 94.4% |
188 | 14.3845 | 27.987 | 3.4399 | 24.8600 | 3.3777 | 92.8% |
192 | 11.439 | 28.275 | 3.6975 | 24.8600 | 3.6949 | 93.1% |
196 | 14.1009 | 28.345 | 4.0525 | 24.8600 | 4.0541 | 93.0% |
200 | 10.2382 | 28.778 | 4.867 | 28.7983074 | 4.9050 | 99.6% |
204 | 9.5045 | 28.83525 | 5.16 | 28.85434946 | 5.1448 | 99.8% |
208 | 9.4644 | 28.8925 | 5.4545 | 28.89521537 | 5.4927 | 99.6% |
212 | 12.754 | 28.94975 | 5.7482 | 24.86 | 5.7404 | 91.7% |
216 | 8.8966 | 29.007 | 6.042 | 28.96290978 | 6.0790 | 99.6% |
220 | 9.1122 | 28.885 | 7.0116 | 29.00115216 | 6.4209 | 95.2% |
224 | 10.0815 | 28.945 | 7.0983 | 29.04998962 | 6.8310 | 97.9% |
229 | 11.0412 | 29.15 | 7.231 | 29.10491902 | 7.2469 | 99.8% |
232 | 11.2517 | 29.1725 | 7.341 | 29.12729376 | 7.4323 | 99.3% |
239 | 7.774 | 29.202 | 7.531 | 29.18287349 | 7.5263 | 99.9% |
248 | 9.1612 | 29.324 | 7.761 | 29.20599516 | 8.0095 | 98.2% |
259 | 7.3411 | 29.556 | 8.631 | 29.5600133 | 8.6280 | 100.0% |
267.5 | 9.1705 | 29.564 | 8.987 | 29.69694264 | 8.7809 | 98.6% |
274.5 | 8.3301 | 31.019 | 9.362 | 31.01305386 | 9.3511 | 99.9% |
278.5 | 9.6329 | 33.372 | 9.761 | 32.19229614 | 9.7187 | 98.0% |
284.5 | 10.247 | 36.518 | 10.401 | 36.50258921 | 10.4959 | 99.5% |
285 | 10.4396 | 40.157 | 10.967 | 36.82257261 | 10.5398 | 93.4% |
S. No. | Input Parameters | Accuracy (in %) |
---|---|---|
1 | SNR | 99.2 |
2 | Skewness | 98.6 |
3 | Kurtosis | 97.1 |
4 | Shannon entropy (107) | 97.8 |
Input Parameters | Actual/Target Values | Predicted Values | Accuracy (in %) | ||||
---|---|---|---|---|---|---|---|
Time Duration | RMS (m/s2) | Crest Factor | Total Area (mm2) | Width (mm) | Total Area (mm2) | Width (mm) | |
0 | 8.347 | 7.1256 | 7.1256 | 24.86 | 1.82 | 24.862 | 99.99% |
10 | 10.22 | 6.8215 | 6.8215 | 24.86 | 1.82 | 24.860 | 100.00% |
20 | 8.087 | 6.2457 | 6.2457 | 24.86 | 1.82 | 24.865 | 99.98% |
30 | 8.472 | 8.0384 | 8.0384 | 24.86 | 1.82 | 24.869 | 99.97% |
40 | 8.485 | 7.0794 | 7.0794 | 24.86 | 1.82 | 24.875 | 99.94% |
50 | 8.448 | 8.2828 | 8.2828 | 24.8625 | 1.82 | 24.886 | 99.91% |
60 | 8.456 | 7.3888 | 7.3888 | 24.865 | 1.82 | 24.904 | 99.84% |
70 | 8.449 | 6.5549 | 6.5549 | 24.8675 | 1.82 | 24.934 | 99.73% |
80 | 8.365 | 7.2492 | 7.2492 | 24.96 | 1.82 | 24.981 | 99.92% |
90 | 8.308 | 6.418 | 6.418 | 24.96 | 1.8286 | 25.051 | 99.64% |
100 | 8.251 | 7.0285 | 7.0285 | 24.96 | 1.8373 | 25.151 | 99.24% |
120 | 8.3 | 6.4237 | 6.4237 | 25.36 | 1.8953 | 25.468 | 99.58% |
140 | 8.601 | 6.7204 | 6.7204 | 25.56 | 1.92 | 25.940 | 98.54% |
160 | 9.264 | 6.8881 | 6.8881 | 26.0445 | 2.1 | 25.753 | 98.87% |
170 | 8.79 | 6.0588 | 6.0588 | 26.4586 | 2.4766 | 26.869 | 98.47% |
180 | 7.68 | 13.357 | 13.357 | 26.978 | 3.1198 | 27.475 | 98.19% |
184 | 16.9 | 11.788 | 11.788 | 27.609 | 3.2798 | 27.437 | 99.37% |
188 | 8.1 | 14.3845 | 14.3845 | 27.987 | 3.4399 | 27.872 | 99.59% |
192 | 7.97 | 11.439 | 11.439 | 28.275 | 3.6975 | 27.986 | 98.97% |
196 | 8.24 | 14.1009 | 14.1009 | 28.345 | 4.0525 | 28.436 | 99.68% |
200 | 25.02 | 10.2382 | 10.2382 | 28.778 | 4.867 | 28.752 | 99.91% |
204 | 22 | 9.5045 | 9.5045 | 28.83525 | 5.16 | 28.785 | 99.83% |
208 | 25.4 | 9.4644 | 9.4644 | 28.8925 | 5.4545 | 28.897 | 99.98% |
212 | 25.7 | 12.754 | 12.754 | 28.94975 | 5.7482 | 28.929 | 99.93% |
216 | 24.9 | 8.8966 | 8.8966 | 29.007 | 6.042 | 28.099 | 96.77% |
220 | 13.8 | 9.1122 | 9.1122 | 28.885 | 7.0116 | 28.900 | 99.95% |
224 | 16 | 10.0815 | 10.0815 | 28.945 | 7.0983 | 29.036 | 99.69% |
229 | 15.28 | 11.0412 | 11.0412 | 29.15 | 7.231 | 29.220 | 99.76% |
232 | 19.2 | 11.2517 | 11.2517 | 29.1725 | 7.341 | 29.294 | 99.59% |
239 | 16.28 | 7.774 | 7.774 | 29.202 | 7.531 | 29.131 | 99.76% |
248 | 19.21 | 9.1612 | 9.1612 | 29.324 | 7.761 | 29.343 | 99.93% |
259 | 14.86 | 7.3411 | 7.3411 | 29.556 | 8.631 | 29.516 | 99.87% |
267.5 | 8.723 | 9.1705 | 9.1705 | 29.564 | 8.987 | 30.492 | 96.96% |
274.5 | 9.15 | 8.3301 | 8.3301 | 31.019 | 9.362 | 29.425 | 94.58% |
278.5 | 9.178 | 9.6329 | 9.6329 | 33.372 | 9.761 | 33.380 | 99.98% |
284.5 | 9.603 | 10.247 | 10.247 | 36.518 | 10.401 | 35.734 | 97.81% |
285 | 9.114 | 10.4396 | 10.4396 | 40.157 | 10.967 | 38.663 | 96.14% |
Input Parameters | Actual/Target Values | Predicted Values | Accuracy (in %) | ||||
---|---|---|---|---|---|---|---|
Time Duration | RMS (m/s2) | SNR | Total Area (mm2) | Width (mm) | Total Area (mm2) | Width (mm) | |
0 | 8.347 | 22.98 | 22.98 | 24.86 | 1.82 | 24.860 | 100.00% |
10 | 10.22 | 20.77 | 20.77 | 24.86 | 1.82 | 24.860 | 100.00% |
20 | 8.087 | 22.33 | 22.33 | 24.86 | 1.82 | 24.860 | 100.00% |
30 | 8.472 | 21.7 | 21.7 | 24.86 | 1.82 | 24.860 | 100.00% |
40 | 8.485 | 22.46 | 22.46 | 24.86 | 1.82 | 24.860 | 100.00% |
50 | 8.448 | 20.71 | 20.71 | 24.8625 | 1.82 | 24.860 | 99.99% |
60 | 8.456 | 23.4 | 23.4 | 24.865 | 1.82 | 24.860 | 99.98% |
70 | 8.449 | 20.99 | 20.99 | 24.8675 | 1.82 | 24.860 | 99.97% |
80 | 8.365 | 23.45 | 23.45 | 24.96 | 1.82 | 24.963 | 99.99% |
90 | 8.308 | 22.34 | 22.34 | 24.96 | 1.8286 | 24.861 | 99.60% |
100 | 8.251 | 21.54 | 21.54 | 24.96 | 1.8373 | 24.860 | 99.60% |
120 | 8.3 | 22.2 | 22.2 | 25.36 | 1.8953 | 25.359 | 100.00% |
140 | 8.601 | 21.8 | 21.8 | 25.56 | 1.92 | 25.950 | 98.50% |
160 | 9.264 | 20.35 | 20.35 | 26.0445 | 2.1 | 26.044 | 100.00% |
170 | 8.79 | 20.29 | 20.29 | 26.4586 | 2.4766 | 26.459 | 100.00% |
180 | 7.68 | 23.6 | 23.6 | 26.978 | 3.1198 | 27.960 | 96.49% |
184 | 16.9 | 24.1 | 24.1 | 27.609 | 3.2798 | 27.608 | 100.00% |
188 | 8.1 | 22.1 | 22.1 | 27.987 | 3.4399 | 27.987 | 100.00% |
192 | 7.97 | 22.9 | 22.9 | 28.275 | 3.6975 | 28.120 | 99.45% |
196 | 8.24 | 24 | 24 | 28.345 | 4.0525 | 28.344 | 100.00% |
200 | 25.02 | 19.67 | 19.67 | 28.778 | 4.867 | 24.860 | 84.24% |
204 | 22 | 19.4 | 19.4 | 28.83525 | 5.16 | 24.860 | 84.01% |
208 | 25.4 | 22.4 | 22.4 | 28.8925 | 5.4545 | 28.892 | 100.00% |
212 | 25.7 | 19.5 | 19.5 | 28.94975 | 5.7482 | 24.860 | 83.55% |
216 | 24.9 | 18.18 | 18.18 | 29.007 | 6.042 | 24.860 | 83.32% |
220 | 13.8 | 24.3 | 24.3 | 28.885 | 7.0116 | 25.148 | 85.14% |
224 | 16 | 21.2 | 21.2 | 28.945 | 7.0983 | 31.529 | 91.80% |
229 | 15.28 | 23.31 | 23.31 | 29.15 | 7.231 | 29.149 | 100.00% |
232 | 19.2 | 22.5 | 22.5 | 29.1725 | 7.341 | 29.172 | 100.00% |
239 | 16.28 | 21.91 | 21.91 | 29.202 | 7.531 | 29.569 | 98.76% |
248 | 19.21 | 17.67 | 17.67 | 29.324 | 7.761 | 24.860 | 82.04% |
259 | 14.86 | 18.42 | 18.42 | 29.556 | 8.631 | 33.783 | 87.49% |
267.5 | 8.723 | 21.7 | 21.7 | 29.564 | 8.987 | 27.384 | 92.04% |
274.5 | 9.15 | 19.51 | 19.51 | 31.019 | 9.362 | 31.018 | 100.00% |
278.5 | 9.178 | 21.2 | 21.2 | 33.372 | 9.761 | 28.197 | 81.65% |
284.5 | 9.603 | 19.47 | 19.47 | 36.518 | 10.401 | 36.518 | 100.00% |
285 | 9.114 | 19.35 | 19.35 | 40.157 | 10.967 | 31.544 | 72.69% |
Input Parameters | Actual/Target Values | Predicted Values | Accuracy (in %) | ||||
---|---|---|---|---|---|---|---|
Time Duration | RMS (m/s2) | Skewness | Total Area (mm2) | Width (mm) | Total Area (mm2) | Width (mm) | |
0 | 8.347 | 0.189 | 0.189 | 24.86 | 1.82 | 24.890 | 99.88% |
10 | 10.22 | 0.168 | 0.168 | 24.86 | 1.82 | 24.911 | 99.80% |
20 | 8.087 | 0.208 | 0.208 | 24.86 | 1.82 | 24.890 | 99.88% |
30 | 8.472 | 0.184 | 0.184 | 24.86 | 1.82 | 24.894 | 99.86% |
40 | 8.485 | 0.22 | 0.22 | 24.86 | 1.82 | 24.900 | 99.84% |
50 | 8.448 | 0.228 | 0.228 | 24.8625 | 1.82 | 24.907 | 99.82% |
60 | 8.456 | 0.229 | 0.229 | 24.865 | 1.82 | 24.916 | 99.80% |
70 | 8.449 | 0.223 | 0.223 | 24.8675 | 1.82 | 24.927 | 99.76% |
80 | 8.365 | 0.223 | 0.223 | 24.96 | 1.82 | 24.942 | 99.93% |
90 | 8.308 | 0.221 | 0.221 | 24.96 | 1.8286 | 24.964 | 99.99% |
100 | 8.251 | 0.216 | 0.216 | 24.96 | 1.8373 | 24.992 | 99.87% |
120 | 8.3 | 0.218 | 0.218 | 25.36 | 1.8953 | 25.124 | 99.06% |
140 | 8.601 | 0.225 | 0.225 | 25.56 | 1.92 | 25.472 | 99.65% |
160 | 9.264 | 0.168 | 0.168 | 26.0445 | 2.1 | 26.192 | 99.44% |
170 | 8.79 | 0.18 | 0.18 | 26.4586 | 2.4766 | 26.674 | 99.19% |
180 | 7.68 | 0.119 | 0.119 | 26.978 | 3.1198 | 26.947 | 99.88% |
184 | 16.9 | 0.07 | 0.07 | 27.609 | 3.2798 | 27.845 | 99.15% |
188 | 8.1 | 0.17 | 0.17 | 27.987 | 3.4399 | 27.724 | 99.05% |
192 | 7.97 | 0.04 | 0.04 | 28.275 | 3.6975 | 28.574 | 98.95% |
196 | 8.24 | 0.11 | 0.11 | 28.345 | 4.0525 | 28.216 | 99.54% |
200 | 25.02 | 0.129 | 0.129 | 28.778 | 4.867 | 29.086 | 98.94% |
204 | 22 | 0.09 | 0.09 | 28.83525 | 5.16 | 28.815 | 99.93% |
208 | 25.4 | 0.11 | 0.11 | 28.8925 | 5.4545 | 30.963 | 93.31% |
212 | 25.7 | 0.16 | 0.16 | 28.94975 | 5.7482 | 29.157 | 99.29% |
216 | 24.9 | 0.178 | 0.178 | 29.007 | 6.042 | 28.649 | 98.75% |
220 | 13.8 | 0.12 | 0.12 | 28.885 | 7.0116 | 28.978 | 99.68% |
224 | 16 | 0.16 | 0.16 | 28.945 | 7.0983 | 28.826 | 99.59% |
229 | 15.28 | 0.078 | 0.078 | 29.15 | 7.231 | 29.602 | 98.47% |
232 | 19.2 | 0.26 | 0.26 | 29.1725 | 7.341 | 30.701 | 95.02% |
239 | 16.28 | 0.141 | 0.141 | 29.202 | 7.531 | 29.257 | 99.81% |
248 | 19.21 | 0.151 | 0.151 | 29.324 | 7.761 | 29.198 | 99.57% |
259 | 14.86 | 0.1707 | 0.1707 | 29.556 | 8.631 | 29.580 | 99.92% |
267.5 | 8.723 | 0.14 | 0.14 | 29.564 | 8.987 | 29.658 | 99.68% |
274.5 | 9.15 | 0.041 | 0.041 | 31.019 | 9.362 | 32.718 | 94.81% |
278.5 | 9.178 | 0.115 | 0.115 | 33.372 | 9.761 | 29.700 | 87.64% |
284.5 | 9.603 | 0.014 | 0.014 | 36.518 | 10.401 | 39.249 | 93.04% |
285 | 9.114 | 0.009 | 0.009 | 40.157 | 10.967 | 39.557 | 98.48% |
Input Parameters | Actual/Target Values | Predicted Values | Accuracy (in %) | ||||
---|---|---|---|---|---|---|---|
Time Duration | RMS (m/s2) | Kurtosis | Total Area (mm2) | Width (mm) | Total Area (mm2) | Width (mm) | |
0 | 8.347 | 5.554 | 5.554 | 24.86 | 1.82 | 24.860 | 100.00% |
10 | 10.22 | 6.492 | 6.492 | 24.86 | 1.82 | 24.860 | 100.00% |
20 | 8.087 | 5.527 | 5.527 | 24.86 | 1.82 | 24.860 | 100.00% |
30 | 8.472 | 5.749 | 5.749 | 24.86 | 1.82 | 24.860 | 100.00% |
40 | 8.485 | 5.626 | 5.626 | 24.86 | 1.82 | 24.860 | 100.00% |
50 | 8.448 | 5.913 | 5.913 | 24.8625 | 1.82 | 24.860 | 99.99% |
60 | 8.456 | 5.549 | 5.549 | 24.865 | 1.82 | 24.860 | 99.98% |
70 | 8.449 | 5.618 | 5.618 | 24.8675 | 1.82 | 24.860 | 99.97% |
80 | 8.365 | 5.542 | 5.542 | 24.96 | 1.82 | 24.860 | 99.60% |
90 | 8.308 | 5.603 | 5.603 | 24.96 | 1.8286 | 24.860 | 99.60% |
100 | 8.251 | 5.752 | 5.752 | 24.96 | 1.8373 | 24.863 | 99.61% |
120 | 8.3 | 5.679 | 5.679 | 25.36 | 1.8953 | 25.170 | 99.25% |
140 | 8.601 | 6.147 | 6.147 | 25.56 | 1.92 | 25.858 | 98.85% |
160 | 9.264 | 5.521 | 5.521 | 26.0445 | 2.1 | 25.981 | 99.76% |
170 | 8.79 | 5.728 | 5.728 | 26.4586 | 2.4766 | 26.438 | 99.92% |
180 | 7.68 | 8.537 | 8.537 | 26.978 | 3.1198 | 26.913 | 99.76% |
184 | 16.9 | 7.43 | 7.43 | 27.609 | 3.2798 | 28.375 | 97.30% |
188 | 8.1 | 9.53 | 9.53 | 27.987 | 3.4399 | 28.002 | 99.95% |
192 | 7.97 | 7.67 | 7.67 | 28.275 | 3.6975 | 29.446 | 96.02% |
196 | 8.24 | 11.6 | 11.6 | 28.345 | 4.0525 | 27.283 | 96.11% |
200 | 25.02 | 7.312 | 7.312 | 28.778 | 4.867 | 28.935 | 99.46% |
204 | 22 | 7.53 | 7.53 | 28.83525 | 5.16 | 28.846 | 99.96% |
208 | 25.4 | 7.15 | 7.15 | 28.8925 | 5.4545 | 28.966 | 99.75% |
212 | 25.7 | 8.63 | 8.63 | 28.94975 | 5.7482 | 28.864 | 99.70% |
216 | 24.9 | 8.017 | 8.017 | 29.007 | 6.042 | 28.957 | 99.83% |
220 | 13.8 | 7.09 | 7.09 | 28.885 | 7.0116 | 29.168 | 99.03% |
224 | 16 | 7.63 | 7.63 | 28.945 | 7.0983 | 28.889 | 99.81% |
229 | 15.28 | 8.1 | 8.1 | 29.15 | 7.231 | 29.104 | 99.84% |
232 | 19.2 | 10.2 | 10.2 | 29.1725 | 7.341 | 30.250 | 96.44% |
239 | 16.28 | 6.48 | 6.48 | 29.202 | 7.531 | 29.092 | 99.62% |
248 | 19.21 | 6.135 | 6.135 | 29.324 | 7.761 | 29.297 | 99.91% |
259 | 14.86 | 6.824 | 6.824 | 29.556 | 8.631 | 29.299 | 99.12% |
267.5 | 8.723 | 4.967 | 4.967 | 29.564 | 8.987 | 26.822 | 89.78% |
274.5 | 9.15 | 6.653 | 6.653 | 31.019 | 9.362 | 31.452 | 98.62% |
278.5 | 9.178 | 6.682 | 6.682 | 33.372 | 9.761 | 31.975 | 95.63% |
284.5 | 9.603 | 7.288 | 7.288 | 36.518 | 10.401 | 36.292 | 99.38% |
285 | 9.114 | 7.954 | 7.954 | 40.157 | 10.967 | 39.883 | 99.31% |
Input Parameters | Actual/Target Values | Predicted Values | Accuracy (in %) | ||||
---|---|---|---|---|---|---|---|
Time Duration | RMS (m/s2) | Shannon Entropy (107) | Total Area (mm2) | Width (mm) | Total Area (mm2) | Width (mm) | |
0 | 8.347 | 2.42 | 2.42 | 24.86 | 1.82 | 24.861 | 100.0% |
10 | 10.22 | 3.59 | 3.59 | 24.86 | 1.82 | 24.862 | 99.99% |
20 | 8.087 | 2.02 | 2.02 | 24.86 | 1.82 | 24.861 | 100.0% |
30 | 8.472 | 2.27 | 2.27 | 24.86 | 1.82 | 24.862 | 99.99% |
40 | 8.485 | 2.27 | 2.27 | 24.86 | 1.82 | 24.863 | 99.99% |
50 | 8.448 | 2.26 | 2.26 | 24.8625 | 1.82 | 24.863 | 100.0% |
60 | 8.456 | 2.26 | 2.26 | 24.865 | 1.82 | 24.865 | 100.0% |
70 | 8.449 | 2.25 | 2.25 | 24.8675 | 1.82 | 24.867 | 100.0% |
80 | 8.365 | 2.19 | 2.19 | 24.96 | 1.82 | 24.871 | 99.64% |
90 | 8.308 | 2.17 | 2.17 | 24.96 | 1.8286 | 24.877 | 99.67% |
100 | 8.251 | 2.13 | 2.13 | 24.96 | 1.8373 | 24.891 | 99.72% |
120 | 8.3 | 2.16 | 2.16 | 25.36 | 1.8953 | 24.987 | 98.51% |
140 | 8.601 | 2.37 | 2.37 | 25.56 | 1.92 | 25.438 | 99.52% |
160 | 9.264 | 2.8 | 2.8 | 26.0445 | 2.1 | 26.614 | 97.86% |
170 | 8.79 | 2.48 | 2.48 | 26.4586 | 2.4766 | 27.025 | 97.90% |
180 | 7.68 | 2.03 | 2.03 | 26.978 | 3.1198 | 27.324 | 98.73% |
184 | 16.9 | 13.9 | 13.9 | 27.609 | 3.2798 | 28.520 | 96.81% |
188 | 8.1 | 2.07 | 2.07 | 27.987 | 3.4399 | 27.707 | 98.99% |
192 | 7.97 | 1.98 | 1.98 | 28.275 | 3.6975 | 27.821 | 98.37% |
196 | 8.24 | 2.19 | 2.19 | 28.345 | 4.0525 | 27.875 | 98.31% |
200 | 25.02 | 30.7 | 30.7 | 28.778 | 4.867 | 28.516 | 99.08% |
204 | 22 | 28 | 28 | 28.83525 | 5.16 | 28.975 | 99.52% |
208 | 25.4 | 20 | 20 | 28.8925 | 5.4545 | 28.973 | 99.72% |
212 | 25.7 | 26 | 26 | 28.94975 | 5.7482 | 29.006 | 99.81% |
216 | 24.9 | 30.5 | 30.5 | 29.007 | 6.042 | 28.798 | 99.27% |
220 | 13.8 | 7.27 | 7.27 | 28.885 | 7.0116 | 27.910 | 96.51% |
224 | 16 | 15.2 | 15.2 | 28.945 | 7.0983 | 28.516 | 98.49% |
229 | 15.28 | 10.2 | 10.2 | 29.15 | 7.231 | 28.898 | 99.13% |
232 | 19.2 | 15.9 | 15.9 | 29.1725 | 7.341 | 28.486 | 97.59% |
239 | 16.28 | 11.7 | 11.7 | 29.202 | 7.531 | 29.349 | 99.50% |
248 | 19.21 | 12.2 | 12.2 | 29.324 | 7.761 | 29.495 | 99.42% |
259 | 14.86 | 9.58 | 9.58 | 29.556 | 8.631 | 30.125 | 98.11% |
267.5 | 8.723 | 2.66 | 2.66 | 29.564 | 8.987 | 29.749 | 99.38% |
274.5 | 9.15 | 3.06 | 3.06 | 31.019 | 9.362 | 32.180 | 96.39% |
278.5 | 9.178 | 13.26 | 13.26 | 33.372 | 9.761 | 33.544 | 99.49% |
284.5 | 9.603 | 3.09 | 3.09 | 36.518 | 10.401 | 37.427 | 97.57% |
285 | 9.114 | 2.74 | 2.74 | 40.157 | 10.967 | 38.142 | 94.72% |
S. No. | Input Parameters | Accuracy (in %) |
---|---|---|
1 | Crest Factor and SNR | 96.51% |
2 | Crest Factor and Skewness | 97.64% |
3 | Crest Factor and Kurtosis | 98.87% |
4 | Crest Factor and Shannon Entropy | 97.36% |
5 | SNR and Skewness | 98.17% |
6 | SNR and Kurtosis | 97.81% |
7 | SNR and Shannon Entropy | 96.08% |
8 | Skewness and Kurtosis | 98.41% |
9 | Skewness and Shannon Entropy | 97.45% |
10 | Kurtosis and Shannon Entropy | 99.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Gopaluni, D.T.; Shoor, S.; Vashishtha, G.; Chauhan, S. Predictive Analysis of Crack Growth in Bearings via Neural Networks. Machines 2024, 12, 607. https://doi.org/10.3390/machines12090607
Singh M, Gopaluni DT, Shoor S, Vashishtha G, Chauhan S. Predictive Analysis of Crack Growth in Bearings via Neural Networks. Machines. 2024; 12(9):607. https://doi.org/10.3390/machines12090607
Chicago/Turabian StyleSingh, Manpreet, Dharma Teja Gopaluni, Sumit Shoor, Govind Vashishtha, and Sumika Chauhan. 2024. "Predictive Analysis of Crack Growth in Bearings via Neural Networks" Machines 12, no. 9: 607. https://doi.org/10.3390/machines12090607
APA StyleSingh, M., Gopaluni, D. T., Shoor, S., Vashishtha, G., & Chauhan, S. (2024). Predictive Analysis of Crack Growth in Bearings via Neural Networks. Machines, 12(9), 607. https://doi.org/10.3390/machines12090607