Digital Twin-Based Prediction and Optimization for Dynamic Supply Chain Management
Abstract
:1. Introduction
2. Research Background
2.1. Supply Chain Management
2.2. Operation Research for Supply Chain Management
2.3. Simulation for Supply Chain Management
2.4. Digital Twin
3. Supply Chain Digital Twin
3.1. Architecture of Supply Chain Digital Twin System
3.2. Configuration Modules
3.2.1. Digital Twin Module
3.2.2. Operation Module
4. Case Study
4.1. Implementation Scope
4.2. Implementation Result
4.3. Case Study Result
4.3.1. Scenario 1, Normal Situation
4.3.2. Scenario 2, Due Date Abnormal Situation
4.3.3. Scenario 3, Production Abnormal Situation
4.3.4. Scenario 4, Traffic Abnormal Situation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tjahjono, B.; Esplugues, C.; Ares, E.; Pelaez, G. What does industry 4.0 mean to supply chain? Procedia Manuf. 2017, 13, 1175–1182. [Google Scholar] [CrossRef]
- Cai, M.; Luo, J. Influence of COVID-19 on manufacturing industry and corresponding countermeasures from supply chain perspective. J. Shanghai Jiaotong Univ. (Sci.) 2020, 25, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Spieske, A.; Birkel, H. Improving supply chain resilience through industry 4.0: A systematic literature review under the impressions of the COVID-19 pandemic. Comput. Ind. Eng. 2021, 158, 107452. [Google Scholar] [CrossRef]
- Dzupire, N.C.; Nkansah-Gyekye, Y. A multi-stage supply chain network optimization using genetic algorithms. arXiv 2014, arXiv:1408.0614. [Google Scholar]
- Pourhejazy, P.; Kwon, O.K. The new generation of operations research methods in supply chain optimization: A review. Sustainability 2016, 8, 1033. [Google Scholar] [CrossRef]
- Chen, C.L.; Wang, B.W.; Lee, W.C. Multiobjective optimization for a multienterprise supply chain network. Ind. Eng. Chem. Res. 2003, 42, 1879–1889. [Google Scholar] [CrossRef]
- Wu, D.; Olson, D.L. Supply chain risk, simulation, and vendor selection. Int. J. Prod. Econ. 2008, 114, 646–655. [Google Scholar] [CrossRef]
- Lee, Y.H.; Cho, M.K.; Kim, S.J.; Kim, Y.B. Supply chain simulation with discrete–continuous combined modeling. Comput. Ind. Eng. 2002, 43, 375–392. [Google Scholar] [CrossRef]
- Ingallis, R.G. The value of simulation in modeling supply chains. In Proceedings of the 1998 Winter Simulation Conference, Washington, DC, USA, 13–16 December 1998; pp. 1371–1375. [Google Scholar]
- Oliveira, J.B.; Lima, R.S.; Montevechi, J.A.B. Perspectives and relationships in supply chain simulation: A systematic literature review. Simul. Model. Pract. Theory 2016, 62, 166–191. [Google Scholar] [CrossRef]
- Wang, L.; Deng, T.; Shen, Z.J.M.; Hu, H.; Qi, Y. Digital twin-driven smart supply chain. Front. Eng. Manag. 2022, 9, 56–70. [Google Scholar] [CrossRef]
- Balderas, D.; Ortiz, A.; Méndez, E.; Ponce, P.; Molina, A. Empowering Digital Twin for Industry 4.0 using metaheuristic optimization algorithms: Case study PCB drilling optimization. Int. J. Adv. Manuf. Technol. 2021, 113, 1295–1306. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S. Digital twin for supply chain coordination in modular construction. Appl. Sci. 2021, 11(13), 5909. [Google Scholar] [CrossRef]
- Lummus, R.R.; Vokurka, R.J. Defining supply chain management: A historical perspective and practical guidelines. Ind. Manag. Data Syst. 1999, 99, 11–17. [Google Scholar] [CrossRef]
- Christopher, M. Logistics and Supply Chain Management, 6th ed.; Pearson: London, UK, 2022. [Google Scholar]
- Cox, J.F., III; Blackstone, J.H., Jr. APICS Dictionary, 9th ed.; American Production and Inventory Control Society: Falls Church, VA, USA, 1998. [Google Scholar]
- Chow, G.; Heaver, T.D. Logistics Strategies for North America. In Global Logistics and Distribution Planning, 2nd ed.; Waters, D., Ed.; Routledge: London, UK, 2018; pp. 359–374. [Google Scholar]
- Mentzer, J.T.; DeWitt, W.; Keebler, J.S.; Min, S.; Nix, N.W.; Smith, C.D.; Zacharia, Z.G. Defining supply chain management. J. Bus. Logist. 2001, 22, 1–25. [Google Scholar] [CrossRef]
- Stevens, G.C. Integrating the supply chain. Int. J. Phys. Distrib. Mater. Manag. 1989, 19, 3–8. [Google Scholar] [CrossRef]
- Graves, S.C.; Willems, S.P. Optimizing the supply chain configuration for new products. Manag. Sci. 2005, 51, 1165–1180. [Google Scholar] [CrossRef]
- Perea-Lopez, E.; Ydstie, B.E.; Grossmann, I.E. A model predictive control strategy for supply chain optimization. Comput. Chem. Eng. 2003, 27, 1201–1218. [Google Scholar] [CrossRef]
- Jamshidi, R.; Ghomi, S.F.; Karimi, B. Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Sci. Iran. 2012, 19, 1876–1886. [Google Scholar] [CrossRef]
- Kaasgari, M.A.; Imani, D.M.; Mahmoodjanloo, M. Optimizing a vendor-managed inventory (VMI) supply chain for perishable products by considering discount: Two calibrated metaheuristic algorithms. Comput. Ind. Eng. 2017, 103, 227–241. [Google Scholar] [CrossRef]
- Braido, G.M.; Borenstein, D.; Casalinho, G.D. Supply chain network optimization using a Tabu Search-based heuristic. Gestão Produção 2016, 23, 3–17. [Google Scholar] [CrossRef]
- Thierry, C.; Thomas, A.; Bel, G. Simulation for Supply Chain Management: An Overview; ISTE Ltd. & John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008; Volume 1, pp. 1–19. [Google Scholar]
- Law, A.M.; McComas, M.G. Simulation of manufacturing systems. In Proceedings of the 19th Winter Simulation Conference, Washington, DC, USA, 14–16 December 1987; pp. 631–643. [Google Scholar]
- Banks, J. Principles of simulation. In Handbook of Simulation; Banks, J., Ed.; Wiley: New York, NY, USA, 1998; pp. 3–30. [Google Scholar]
- Hosseinpour, F.; Hajihosseini, H. Importance of simulation in manufacturing. World Acad. Sci. Eng. Technol. 2009, 51, 292–295. [Google Scholar]
- Terzi, S.; Cavalieri, S. Simulation in the supply chain context: A survey. Comput. Ind. 2004, 53, 3–16. [Google Scholar] [CrossRef]
- Banks, J.; Buckley, S.; Jain, S.; Lendermann, P.; Manivannan, M. Opportunities for simulation in supply chain management. In Proceedings of the Winter Simulation Conference, San Diego, CA, USA, 8–11 December 2002; pp. 1652–1658. [Google Scholar]
- Falcone, A.; Garro, A. The SEE HLA Starter Kit: Enabling the rapid prototyping of HLA-based simulations for space exploration. In Proceedings of the Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems 2016 and Space Simulation for Planetary Space Exploration (SPACE 2016), Pasadena, CA, USA, 24–28 September 2016; pp. 1–8. [Google Scholar]
- Bhaskaran, S. Simulation analysis of a manufacturing supply chain. Decis. Sci. 1998, 29, 633–657. [Google Scholar] [CrossRef]
- Bottani, E.; Montanari, R. Supply chain design and cost analysis through simulation. Int. J. Prod. Res. 2010, 48, 2859–2886. [Google Scholar] [CrossRef]
- Carvalho, H.; Barroso, A.P.; Machado, V.H.; Azevedo, S.; Cruz-Machado, V. Supply chain redesign for resilience using simulation. Comput. Ind. Eng. 2012, 62, 329–341. [Google Scholar] [CrossRef]
- Rouzafzoon, J.; Helo, P. Developing logistics and supply chain management by using agent-based simulation. In Proceedings of the First International Conference on Artificial Intelligence for Industries (AI4I), Laguna Hills, CA, USA, 26–28 September 2018; pp. 35–38. [Google Scholar]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Ji, P.; Xu, W.; Zhou, Z.; Tao, F. Cyber-physical integration for moving digital factories forward towards smart manufacturing: A survey. Int. J. Adv. Manuf. Technol. 2018, 97, 1209–1221. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Söderberg, R.; Wärmefjord, K.; Carlson, J.S.; Lindkvist, L. Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Ann. 2017, 66, 137–140. [Google Scholar] [CrossRef]
- Wang, J.; Ye, L.; Gao, R.X.; Li, C.; Zhang, L. Digital twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 2019, 57, 3920–3934. [Google Scholar] [CrossRef]
- Ribeiro, L. Cyber-physical production systems’ design challenges. In Proceedings of the IEEE International Symposium on Industrial Electronics, Edinburgh, UK, 19–21 June 2017; pp. 1189–1194. [Google Scholar]
- Park, K.T.; Im, S.J.; Kang, Y.S.; Noh, S.D.; Kang, Y.T.; Yang, S.G. Service-oriented platform for smart operation of dyeing and finishing industry. Int. J. Comput. Integr. Manuf. 2019, 32, 307–326. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Cheng, J.; Qi, Q. Digital twin workshop: A new paradigm for future workshop. Comput. Integr. Manuf. Syst. 2017, 23, 1–9. [Google Scholar]
- Barykin, S.Y.; Bochkarev, A.A.; Kalinina, O.V.; Yadykin, V.K. Concept for a supply chain digital twin. Int. J. Math. Eng. Manag. Sci. 2020, 5, 1498–1515. [Google Scholar] [CrossRef]
- Busse, A.; Gerlach, B.; Lengeling, J.C.; Poschmann, P.; Werner, J.; Zarnitz, S. Towards digital twins of multimodal supply chains. Logistics 2021, 5, 25. [Google Scholar] [CrossRef]
- Kalaboukas, K.; Rožanec, J.; Košmerlj, A.; Kiritsis, D.; Arampatzis, G. Implementation of cognitive digital twins in connected and agile supply networks—An operational model. Appl. Sci. 2021, 11, 4103. [Google Scholar] [CrossRef]
- Agrawal, P.; Narain, R. Digital supply chain management: An overview. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 15–17 December 2018; p. 012074. [Google Scholar]
- Ivanov, D.; Dolgui, A.; Das, A.; Sokolov, B. Digital supply chain twins: Managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. In Handbook of Ripple Effects in the Supply Chain; Springer: Cham, Switzerland, 2019; pp. 309–332. [Google Scholar]
- Lee, S. Supply Chain Digital Twin for Integrated Production-Logistics Analytics and Forecasting. Master’s Thesis, Sungkyunkwan University, Suwon, Republic of Korea, 2020. [Google Scholar]
- Blomkvist, Y.; Loenbom, L.E.O. Improving Supply Chain Visibility Within Logistics by Implementing a Digital Twin: A Case Study at Scania Logistics. Master’s Thesis, Lund University, Lund, Sweden, 2020. [Google Scholar]
- Ivanov, D. Digital supply chain management and technology to enhance resilience by building and using end-to-end visibility during the COVID-19 pandemic. IEEE Trans. Eng. Manag. 2021, 68, 2–8. [Google Scholar] [CrossRef]
- Hossain, M.I.; Talapatra, S.; Saha, P.; Belal, H.M. From Theory to Practice: Leveraging Digital Twin Technologies and Supply Chain Disruption Mitigation Strategies for Enhanced Supply Chain Resilience with Strategic Fit in Focus. Glob. J. Flex. Syst. Manag. 2024, 1–23. [Google Scholar] [CrossRef]
- Lam, W.S.; Lam, W.H.; Lee, P.F. A bibliometric analysis of digital twin in the supply chain. Mathematics 2023, 11, 3350. [Google Scholar] [CrossRef]
- Marmolejo-Saucedo, J.A. Design and development of digital twins: A case study in supply chains. Mob. Netw. Appl. 2020, 25, 2141–2160. [Google Scholar] [CrossRef]
- Guo, D.; Mantravadi, S. The role of digital twins in lean supply chain management: Review and research directions. Int. J. Prod. Res. 2024, 1–22. [Google Scholar] [CrossRef]
- Katsaliaki, K.; Galetsi, P.; Kumar, S. Supply chain disruptions and resilience: A major review and future research agenda. Ann. Oper. Res. 2022, 319, 965–1002. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Han, D.H.; Lee, Y.I. Development of freeway traffic incident clearance time prediction model by accident level. J. Korean Soc. Transp. 2015, 33, 497–507. [Google Scholar] [CrossRef]
Category | Input Data | Output Data |
---|---|---|
Production Operations | Real-time order volume | Predicted production volume Production finish datetime |
Logistics Simulation | Pre-/post- production plant location Production finish datetime | Product arrival datetime Travel distance |
Indices | |
---|---|
s | Index for suppliers (s ∈ S) |
m | Index for Tier2-manufacturers (m ∈ M) |
p | Index for Tier1-manufacturers (p ∈ P) |
i | Index for customers (i ∈ I) |
Parameters | |
Unit transportation cost for the material from supplier s to Tier2-manufacturers m | |
Unit transportation cost for the material from Tier2-manufacturers m to Tier1-manufacturers p | |
Unit transportation cost for the material from Tier1-manufacturers p to customer i | |
Inventory maintenance cost per unit for supplier s | |
Inventory maintenance cost per unit for Tier2 manufacturer m | |
Inventory maintenance cost per unit for Tier1 manufacturer p | |
Variables | |
Quantity of material shipped from supplier s to mid-plant m | |
Quantity of material shipped from Tier2-manufacturers m to Tier1-manufacturers p | |
Quantity of product shipped from Tier1-manufacturer p to customer i | |
Q | Quantity of inventory for supplier, Tier2/Tier1 manufacturer |
Digital Twin Module Development Environment | |
---|---|
OS | Windows 11 |
Processor | Intel(R) Core(TM) i7-70750H CPU @ 2.60 GHz (manufactured by Intel, based in Santa Clara, CA, USA) |
IDE | Visual Studio 2019 |
Programming Language | C#, Javascript |
Network Protocol | TIP/IP |
Simulation Engine | Plant Simulation 15.2, SKT T-Map API |
Optimization Module Development Environment | |
OS | Windows 11 |
Processor | Intel(R) Core(TM) i7-70750H CPU @ 2.60 GHz |
IDE | Spyder 4.1.5 |
Programming Language | Python 3.8 |
Network Protocol | TCP/IP |
Supplier | S1 | S2 | - | |
---|---|---|---|---|
Avg. Production (ea) | A-2, A-3 | 206 | - | - |
B-2, B-3 | 218 | - | - | |
C-2, C-3 | - | 256 | - | |
Avg. Operating Time (h) | 12 | 12 | 12 |
Tier2 Manufacturer | M1 | M2 | M3 | |
---|---|---|---|---|
Avg. Production (ea) | A-1 | 186 | 195 | - |
B-1 | - | 192 | 215 | |
C-1 | 228 | - | 226 | |
Avg. Operating Time (h) | 12 | 12 | 12 |
Tier1 Manufacturer | P1 | P2 | P3 | |
---|---|---|---|---|
Avg. Production (ea) | A | 215 | - | 201 |
B | 205 | 212 | - | |
C | - | 215 | 224 | |
Avg. Operating Time (h) | 12 | 12 | 12 |
Cost | As-Is (USD *) | To-Be (USD) | Comparison | Result |
---|---|---|---|---|
Inventory Cost | 5830.8 | 5307.7 | −523.1 | −8.97% |
Supplier | 3692.3 | 3692.3 | 0.0 | 0.00% |
Tier2 | 1200.0 | 676.9 | −523.1 | −43.59% |
Tier1 | 938.5 | 938.5 | 0.0 | 0.00% |
Logistics Cost | 121.4 | 119.8 | −1.6 | −1.30% |
Supplier-Tier2 | 48.6 | 49.8 | 1.2 | +2.42% |
Tier2-Tier1 | 72.8 | 70.0 | −2.8 | −3.78% |
Total Cost | 5952.2 | 5427.5 | −524.7 | −8.82% |
Existing Due-Date (a) | Changed Due-Date (b) | |
---|---|---|
Due-date | 2024-01-10T09:00:00 | 2024-01-09T09:00:00 |
Analyzed result |
Product | Supply Chain | Inventory Cost | Logistics Cost | Total Cost (A + B) | |||||
---|---|---|---|---|---|---|---|---|---|
Supplier (a) | Tier2 (b) | Tier1 (c) | Subtotals (A = a + b + c) | Supplier– Tier2 (d) | Tier2– Tier1 (e) | Subtotals (B = d + e) | |||
A | s1-m1-p3 | 1107.7 | 246.2 | 476.9 | 1830.8 | 18.9 | 22.8 | 41.6 | 1872.4 |
B | s1-m2-p1 | 861.5 | 30.8 | 230.8 | 1123.1 | 11.0 | 20.2 | 31.3 | 1154.3 |
C | s2-m3-p2 | 1723.1 | 400.0 | 230.8 | 2353.8 | 19.9 | 27.1 | 46.9 | 2400.8 |
Total Cost | 3692.3 | 676.9 | 938.5 | 5307.7 | 49.8 | 70.0 | 119.8 | 5427.5 |
Product | Supply Chain | Inventory Cost | Logistics Cost | Total Cost (A + B) | |||||
---|---|---|---|---|---|---|---|---|---|
Supplier (a) | Tier2 (b) | Tier1 (c) | Subtotals (A = a + b + c) | Supplier– Tier2 (d) | Tier2– Tier1 (e) | Subtotals (B = d + e) | |||
A | s1-m2-p3 | 55.4 | 19.2 | 23.8 | 98.5 | 11.0 | 19.7 | 30.8 | 129.2 |
B | s1-m2-p1 | 43.1 | 1.5 | 11.5 | 56.2 | 11.0 | 20.2 | 31.3 | 87.4 |
C | s2-m3-p2 | 86.2 | 20.0 | 11.5 | 117.7 | 19.9 | 27.1 | 46.9 | 164.6 |
Total Cost | 184.6 | 40.8 | 46.9 | 272.3 | 42.0 | 67.0. | 109.0 | 381.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Kim, G.-Y.; Noh, S.D. Digital Twin-Based Prediction and Optimization for Dynamic Supply Chain Management. Machines 2025, 13, 109. https://doi.org/10.3390/machines13020109
Kim D-H, Kim G-Y, Noh SD. Digital Twin-Based Prediction and Optimization for Dynamic Supply Chain Management. Machines. 2025; 13(2):109. https://doi.org/10.3390/machines13020109
Chicago/Turabian StyleKim, Dong-Hun, Goo-Young Kim, and Sang Do Noh. 2025. "Digital Twin-Based Prediction and Optimization for Dynamic Supply Chain Management" Machines 13, no. 2: 109. https://doi.org/10.3390/machines13020109
APA StyleKim, D.-H., Kim, G.-Y., & Noh, S. D. (2025). Digital Twin-Based Prediction and Optimization for Dynamic Supply Chain Management. Machines, 13(2), 109. https://doi.org/10.3390/machines13020109