Performance Verification of a Flexible Vibration Monitoring System
Abstract
:1. Introduction
2. System Overview
2.1. Software
2.2. Hardware
3. Software Framework
3.1. Establishing Parameter Set
3.2. Filtering
3.3. Windowing Options
3.4. Signal Conversion
3.5. Analysis Type
3.5.1. Peak-to-Peak
3.5.2. Frequency Spectrum Analysis
3.5.3. Power Spectral Density
3.5.4. Event Analysis
4. User Interface
4.1. Results—Live Data VI
4.2. Results—Post-Measurement Analysis VI
4.3. System Properties and Errors Section
4.4. Data Handling
5. Lathe Condition Monitoring Investigation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leach, R.K. Fundamental Principles of Engineering Nanometrology; Elsevier: London, UK, 2014. [Google Scholar]
- Savio, E.; De Chiffre, L.; Carmignato, S.; Meinertz, J. Economic benefits of metrology in manufacturing. CIRP Ann. 2016, 65, 495–498. [Google Scholar] [CrossRef]
- Leach, R.K.; Bourell, D.; Carmignato, S.; Donmez, A.; Senin, N.; Dewulf, W. Geometrical metrology for metal additive manufacturing. CIRP Ann. 2019, 68, 677–700. [Google Scholar] [CrossRef]
- Nie, M.; Wang, L. Review of condition monitoring and fault diagnosis technologies for wind turbine gearbox. Proc. CIRP 2013, 11, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Ahirrao, N.S.; Bhosle, S.P.; Nehete, D.V. Dynamics and vibration measurements in engines. Proc. Manuf. 2018, 20, 434–439. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; Zuo, M.J.; He, Z. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305. [Google Scholar] [CrossRef]
- Randall, R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications; John Wiley & Sons: London, UK, 2011. [Google Scholar]
- Ambhore, N.; Kamble, D.; Chinchanikar, S.; Wayal, V. Tool condition monitoring system: A review. Mater. Today Proc. 2015, 2, 3419–3428. [Google Scholar] [CrossRef]
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018, 17, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, A.P.; Chiara, F.F.; Laforgia, D. Analysis of the relation between injection parameter variation and block vibration of an internal combustion diesel engine. J. Sound Vib. 2006, 295, 141–164. [Google Scholar] [CrossRef]
- Albizuri, J.; Fernandes, M.H.; Garitaonandia, I.; Sabalza, X.; Uribe-Etxeberria, R.; Hernández, J.M. An active system of reduction of vibrations in a centerless grinding machine using piezoelectric actuators. Int. J. Mach. Tools Manuf. 2007, 47, 1607–1614. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Ghobadian, B.; Tavakoli-Hashjin, T.; Mohtasebi, S.S. Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel 2012, 102, 414–422. [Google Scholar] [CrossRef]
- Tatar, K.; Gren, P. Measurement of milling tool vibrations during cutting using laser vibrometry. Int. J. Mach. Tools Manuf. 2008, 48, 380–387. [Google Scholar] [CrossRef]
- Miyaguchi, T.; Masuda, M.; Takeoka, E.; Iwabe, H. Effect of tool stiffness upon tool wear in high spindle speed milling using small ball end mill. Precis. Eng. 2001, 25, 145–154. [Google Scholar] [CrossRef]
- Wojciechowski, S. Machined surface roughness including cutter displacements in milling of hardened steel. Metrol. Meas. Syst. 2011, 18, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowski, S.; Twardowski, P.; Pelic, M.; Maruda, R.W.; Barrans, S.; Krolczyk, G.M. Precision surface characterization for finish cylindrical milling with dynamic tool displacements model. Precis. Eng. 2016, 46, 158–165. [Google Scholar] [CrossRef]
- El-Basheer, T.M.; Shawky, H.A. Measurement and limits of vibration affecting the sensitive equipments of some metrological laboratories. Euronoise 2018, 11, 2637–2644. [Google Scholar]
- ISO 23165:2006: Geometrical Product Specification (GPS)-Guidelines for the Evaluation of Coordinate Measuring Machine (CMM) Test Uncertainty; International Organisation for Standardisation: Geneva, Switzerland, 2006.
- Zygo New View TM8300 Specifications. 2014. Available online: http://www.lambdaphoto.co.uk/pdfs/Zygo/Lambda_NewView8300_Specs_SS0100_3_14.pdf (accessed on 10 July 2019).
- Feese, T.; Hill, C.L. Prevention of torsional vibration problems in reciprocating machinery. In The 38th Turbomachinery Symposium; Texas A&M University: College Station, TX, USA, 2009; pp. 213–238. [Google Scholar]
- ISA-RP-372. Guide for Specifications and Tests for Piezoelectric Acceleration Transducers for Aerospace Testing; International Society of Automation (ISA): Pittsburgh, NC, USA, 1995. [Google Scholar]
- Link, A.; Täubner, A.; Wabinski, W.; Bruns, T.; Elster, C. Calibration of accelerometers: Determination of amplitude and phase response upon shock excitation. Meas. Sci. Technol. 2006, 17, 1888. [Google Scholar] [CrossRef]
- Brandt, A. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures; John Wiley & Sons: London, UK, 2011. [Google Scholar]
- Prabhu, K.M. Window Functions and Their Applications in Signal Processing; CRC Press: Boca Raton, FL, USA, 2013; Chapter 3. [Google Scholar]
- Mercer, C. Acceleration, velocity and displacement spectra-omega arithmetic. Prosig Signal Process. Tutor. 2006, 1, 1–8. [Google Scholar]
Feature/Attribute | Specification |
---|---|
Model | 65L-100 |
Sensitivity | 102.5 mV/ms−2 |
Number of axes | 3 |
Mass | 5 g |
Dimensions | (10 × 10 ×10) mm |
Dynamic range | ±50 g |
Measurement uncertainty | ±5% |
Temperature range | −53 °C to +125 °C |
Mounting | Adhesive or M2.5 thread |
Frequency response | 1 Hz to 6000 Hz |
Attribute | Setting |
---|---|
Spindle speed | 600 RPM |
Feed rate | 0.15 mm/rev |
Cut length | 100 mm |
Material | EN 24 steel |
Diameter | 38 mm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bointon, P.; Todhunter, L.; Clare, A.; Leach, R. Performance Verification of a Flexible Vibration Monitoring System. Machines 2020, 8, 3. https://doi.org/10.3390/machines8010003
Bointon P, Todhunter L, Clare A, Leach R. Performance Verification of a Flexible Vibration Monitoring System. Machines. 2020; 8(1):3. https://doi.org/10.3390/machines8010003
Chicago/Turabian StyleBointon, Patrick, Luke Todhunter, Adam Clare, and Richard Leach. 2020. "Performance Verification of a Flexible Vibration Monitoring System" Machines 8, no. 1: 3. https://doi.org/10.3390/machines8010003
APA StyleBointon, P., Todhunter, L., Clare, A., & Leach, R. (2020). Performance Verification of a Flexible Vibration Monitoring System. Machines, 8(1), 3. https://doi.org/10.3390/machines8010003