Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial BLAST and Clustering
2.2. Validation with BLAST, OMA, and Phylogeny
2.3. Selecting Most Conserved Orthologs
2.4. Multi-Species Gene Enrichment Analysis
2.5. Detailed Functional Analysis of Genes from Model Organisms
2.6. Cross Species Expression Profiles
2.7. Are Expression Profiles Driven by Gene Function?
2.8. Age Index of Proteins
3. Results
3.1. Defining Potential Clade-Specific Proteins in Bilateria
- C:
- Each cluster must contain one or more representatives from each of the three major clades, Lophotrochozoa, Ecdysozoa and Deuterostomia. This set contains 506 clusters.
- M:
- Each cluster must contain representatives from all model organisms, D. rerio, D. melanogaster and C. elegans. This set contains 160 clusters.
- L:
- Each cluster contains representatives from all major clades, as in set C. However, only those clusters are permitted for which the representation of species is explained by at most one loss event along the species tree (set C does not have this restriction). This resulted in 125 clusters
- A:
- Each cluster contains representatives of all bilaterian species considered (no protein loss is admitted) except possibly A. californica. This set has 34 clusters.
3.2. Orthologues Conserved Across Divergent Bilateria
3.3. Clade-Specificity Declines with Data Availability
Most Conserved Orthologues
3.4. Gene Ontology and Functional Classification
3.4.1. Go Terms Reveal a Link to Development
3.4.2. Inference of Biological Function Through Literature Mining
3.5. Expression Profiles
3.5.1. Pooled Profiles
3.5.2. Characteristic Expression Profiles
3.5.3. Expression Profiles Stratified by Function and Age
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
COPs | Clusters of Orthologous Proteins |
MCO | Most Conserved Ortholog |
HOGs | Hierarchical Orthologous Groups |
MSGEA | Multi-Species Gene Enrichment Analysis |
References
- Marschall, C.R. Explaining the Cambrian “Explosion” of Animals. Annu. Rev. Earth Planet. Sci. 2006, 34, 355–384. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.; Scharff, N.; Eibye-Jacobsen, D. Cladistic analyses of the animal kingdom. Biol. J. Linn. Soc. 1996, 57, 385–410. [Google Scholar] [CrossRef]
- Erwin, D.; Davidson, E. The last common bilaterian ancestor. Development 2002, 129, 3021–3032. [Google Scholar] [PubMed]
- Telford, M.; Lockyer, A.; Cartwright-Finch, C.; Littlewood, D. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc. Biol. Sci. 2003, 270, 1077–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hejnol, A.; Martindale, M. Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 2008, 456, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Philippe, H.; Brinkmann, H.; Copley, R.; Moroz, L.; Nakano, H.; Poustka, A.; Wallberg, A.; Peterson, K.; Telford, M. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 2011, 470, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.; Vellutini, B.; Smith, J., 3rd; Ronquist, F.; Jondelius, U.; Hejnol, A. Xenacoelomorpha is the sister group to Nephrozoa. Nature 2016, 530, 89–93. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, M.; Thawornwattana, Y.; Angelis, K.; Telford, M.; Donoghue, P.; Yang, Z. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales. Curr. Biol. 2015, 25, 2939–2950. [Google Scholar] [CrossRef] [Green Version]
- Irie, N.; Kuratani, S. The developmental hourglass model: A predictor of the basic body plan? Development 2014, 141, 4649–4655. [Google Scholar] [CrossRef] [Green Version]
- Yanai, I. Development and Evolution through the Lens of Global Gene Regulation. Trends Genet. 2018, 34, 11–20. [Google Scholar] [CrossRef]
- Zalts, H.; Yanai, I. Developmental constraints shape the evolution of the nematode mid-developmental transition. Nat. Ecol. Evol. 2017, 1, 113. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.; Anavy, L.; Cole, A.G.; Winter, E.; Mostov, N.; Khair, S.; Senderovich, N.; Kovalev, E.; Silver, D.H.; Feder, M.; et al. The mid-developmental transition and the evolution of animal body plans. Nature 2016, 531, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Robinson-Rechavi, M. Developmental Constraints on Genome Evolution in Four Bilaterian Model Species. Genome Biol. Evol. 2018, 10, 2266–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duboule, D. Temporal colinearity and the phylotypic progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev. Suppl. 1994, 1994, 135–142. [Google Scholar]
- Raff, R.A. The Shape of Life; Genes, Development, and the Evolution of Animal Form; University of Chicago Press: Chicago, IL, USA, 1996. [Google Scholar]
- Baer, K.E.V. Über Entwickelungsgeschichte der Thiere. Beobachtung und Reflexion …; Bei den Gebrüdern Bornträger: Königsberg, Russia, 1828. [Google Scholar]
- Saina, M.; Genikhovich, G.; Renfer, E.; Technau, U. BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc. Natl. Acad. Sci. USA 2009, 106, 18592–18597. [Google Scholar] [CrossRef] [Green Version]
- Gauchat, D.; Mazet, F.; Berney, C.; Schummer, M.; Kreger, S.; Pawlowski, J.; Galliot, B. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc. Natl. Acad. Sci. USA 2000, 97, 4493–4498. [Google Scholar] [CrossRef] [Green Version]
- Sinigaglia, C.; Busengdal, H.; Leclere, L.; Technau, U.; Rentzsch, F. The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol. 2013, 11, e1001488. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Rodin, A.; Zhou, Y.; Dickinson, D.; Harper, D.; Hewett-Emmett, D.; Li, W. Evolution of paired domains: Isolation and sequencing of jellyfish and hydra Pax genes related to Pax-5 and Pax-6. Proc. Natl. Acad. Sci. USA 1997, 94, 5156–5161. [Google Scholar] [CrossRef] [Green Version]
- Simakov, O.; Marletaz, F.; Cho, S.; Edsinger-Gonzales, E.; Havlak, P.; Hellsten, U.; Kuo, D.; Larsson, T.; Lv, J.; Arendt, D.; et al. Insights into bilaterian evolution from three spiralian genomes. Nature 2013, 493, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Moroz, L.; Kocot, K.; Citarella, M.; Dosung, S.; Norekian, T.; Povolotskaya, I.; Grigorenko, A.; Dailey, C.; Berezikov, E.; Buckley, K.; et al. The ctenophore genome and the evolutionary origins of neural systems. Nature 2014, 510, 109–114. [Google Scholar] [CrossRef]
- Srivastava, M.; Simakov, O.; Chapman, J.; Fahey, B.; Gauthier, M.; Mitros, T.; Richards, G.; Conaco, C.; Dacre, M.; Hellsten, U.; et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010, 466, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Putnam, N.; Srivastava, M.; Hellsten, U.; Dirks, B.; Chapman, J.; Salamov, A.; Terry, A.; Shapiro, H.; Lindquist, E.; Kapitonov, V.; et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simakov, O.; Kawashima, T.; Marletaz, F.; Jenkins, J.; Koyanagi, R.; Mitros, T.; Hisata, K.; Bredeson, J.; Shoguchi, E.; Gyoja, F.; et al. Hemichordate genomes and deuterostome origins. Nature 2015, 527, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heger, P.; Marin, B.; Bartkuhn, M.; Schierenberg, E.; Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl. Acad. Sci. USA 2012, 109, 17507–17512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdobnov, E.; Apweiler, R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17, 847–848. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.; Blake, J.; Botstein, D.; Butler, H.; Cherry, J.; Davis, A.; Dolinski, K.; Dwight, S.; Eppig, J.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Stoeckert, C., Jr.; Roos, D. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef] [Green Version]
- Alexeyenko, A.; Tamas, I.; Liu, G.; Sonnhammer, E. Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics 2006, 22, e9–e15. [Google Scholar] [CrossRef] [Green Version]
- Shaye, D.; Greenwald, I. OrthoList: A compendium of C. elegans genes with human orthologs. PLoS ONE 2011, 6, e20085. [Google Scholar] [CrossRef]
- Hulsen, T.; Huynen, M.; de Vlieg, J.; Groenen, P. Benchmarking ortholog identification methods using functional genomics data. Genome Biol. 2006, 7, R31. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef]
- Moreno-Hagelsieb, G.; Latimer, K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 2008, 24, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Dessimoz, C.; Cannarozzi, G.; Gil, M.; Margadant, D.; Roth, A.; Schneider, A.; Gonnet, G.H. OMA, A Comprehensive, Automated Project for the Identification of Orthologs from Complete Genome Data: Introduction and First Achievements. In Comparative Genomics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 61–72. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Siepel, A.; Bejerano, G.; Pedersen, J.; Hinrichs, A.; Hou, M.; Rosenbloom, K.; Clawson, H.; Spieth, J.; Hillier, L.; Richards, S.; et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005, 15, 1034–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoav Benjamini, Y.H. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Guberman, J.; Ai, J.; Arnaiz, O.; Baran, J.; Blake, A.; Baldock, R.; Chelala, C.; Croft, D.; Cros, A.; Cutts, R.; et al. BioMart Central Portal: An open database network for the biological community. Database 2011, 2011, bar041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graveley, B.; Brooks, A.; Carlson, J.; Duff, M.; Landolin, J.; Yang, L.; Artieri, C.; van Baren, M.; Boley, N.; Booth, B.; et al. The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471, 473–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherbas, L.; Willingham, A.; Zhang, D.; Yang, L.; Zou, Y.; Eads, B.; Carlson, J.; Landolin, J.; Kapranov, P.; Dumais, J.; et al. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 2011, 21, 301–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domazet-Loso, T.; Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 2010, 8, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, M.; Hashimshony, T.; Wagner, F.; Yanai, I. Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev. Cell 2012, 22, 1101–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.; Braasch, I.; Frickey, T.; Meyer, A.; Van de Peer, Y. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res. 2003, 13, 382–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerstein, M.; Rozowsky, J.; Yan, K.; Wang, D.; Cheng, C.; Brown, J.; Davis, C.; Hillier, L.; Sisu, C.; Li, J.; et al. Comparative analysis of the transcriptome across distant species. Nature 2014, 512, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Ninova, M.; Ronshaugen, M.; Griffiths-Jones, S. Conserved temporal patterns of microRNA expression in Drosophila support a developmental hourglass model. Genome Biol. Evol. 2014, 6, 2459–2467. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, P.H.; Polsky, A.L.; Cole, A.G.; Camps, J.I.R.; Kroiher, M.; Silver, D.H.; Grishkevich, V.; Anavy, L.; Koutsovoulos, G.; Hashimshony, T.; et al. The gene regulatory program of Acrobeloides nanus reveals conservation of phylum-specific expression. Proc. Natl. Acad. Sci. USA 2018, 115, 4459–4464. [Google Scholar] [CrossRef] [Green Version]
- Quint, M.; Drost, H.; Gabel, A.; Ullrich, K.; Bonn, M.; Grosse, I. A transcriptomic hourglass in plant embryogenesis. Nature 2012, 490, 98–101. [Google Scholar] [CrossRef]
- Cheng, X.; Hui, J.; Lee, Y.; Wan Law, P.; Kwan, H. A “developmental hourglass” in fungi. Mol. Biol. Evol. 2015, 32, 1556–1566. [Google Scholar] [CrossRef] [Green Version]
- Domazet-Loso, T.; Brajkovic, J.; Tautz, D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007, 23, 533–539. [Google Scholar] [CrossRef]
- Sestak, M.; Domazet-Loso, T. Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain. Mol. Biol. Evol. 2015, 32, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Koonin, E. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 2003, 1, 127–136. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, E9–E13. [Google Scholar] [CrossRef] [Green Version]
- Aboobaker, A.; Blaxter, M. Hox Gene Loss during Dynamic Evolution of the Nematode Cluster. Curr. Biol. 2003, 13, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Durán, J.M.; Pang, K.; Børve, A.; Lê, H.S.; Furu, A.; Cannon, J.T.; Jondelius, U.; Hejnol, A. Convergent evolution of bilaterian nerve cords. Nature 2018, 553, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, H.; Bickel, P.; Brenner, S. Comparison of D. melanogaster and C. elegans developmental stages, tissues, and cells by modENCODE RNA-seq data. Genome Res. 2014, 24, 1086–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimmel, C.; Ballard, W.; Kimmel, S.; Ullmann, B.; Schilling, T. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, P.; Kroiher, M.; Kraus, C.; Koutsovoulos, G.; Kumar, S.; Camps, J.; Nsah, N.; Stappert, D.; Morris, K.; Heger, P.; et al. The genome of Romanomermis culicivorax: Revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genom. 2013, 14, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, E.; Erwin, D. Gene regulatory networks and the evolution of animal body plans. Science 2006, 311, 796–800. [Google Scholar] [CrossRef] [Green Version]
- Macchietto, M.; Angdembey, D.; Heidarpour, N.; Serra, L.; Rodriguez, B.; El-Ali, N.; Mortazavi, A. Comparative Transcriptomics of Steinernema and Caenorhabditis Single Embryos Reveals Orthologous Gene Expression Convergence during Late Embryogenesis. Genome Biol. Evol. 2017, 9, 2681–2696. [Google Scholar] [CrossRef] [Green Version]
- Schwaiger, M.; Schonauer, A.; Rendeiro, A.; Pribitzer, C.; Schauer, A.; Gilles, A.; Schinko, J.; Renfer, E.; Fredman, D.; Technau, U. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 2014, 24, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Sebé-Pedrós, A.; Chomsky, E.; Pang, K.; Lara-Astiaso, D.; Gaiti, F.; Mukamel, Z.; Amit, I.; Hejnol, A.; Degnan, B.M.; Tanay, A. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2018, 2, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Lian, S.; Qin, Z.; Zhu, X.; Dai, X.; Huang, Z.; Ke, C.; Zhou, Z.; Wei, J.; et al. Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae. Nat. Ecol. Evol. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Begovic, E.; Chapman, J.; Putnam, N.; Hellsten, U.; Kawashima, T.; Kuo, A.; Mitros, T.; Salamov, A.; Carpenter, M.; et al. The Trichoplax genome and the nature of placozoans. Nature 2008, 454, 955–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Data Source | No. Proteins in Database | No. Proteins in all COPs | No. COPs w/ Species | No. Proteins per COP |
---|---|---|---|---|---|
Bilateria | |||||
Deuterostomia | |||||
Danio rerio | Ensembl | 41,693 | 1190 | 428 | 2.78 |
Strongylocentrotus purpuratus | NCBI | 42,420 | 652 | 260 | 2.51 |
Mus musculus | Ensembl | 40,732 | 867 | 357 | 2.43 |
Ecdysozoa | |||||
Anopheles gambiae | Ensembl | 13,133 | 380 | 307 | 1.24 |
Drosophila melanogaster | FlyBase | 23,849 | 989 | 392 | 2.52 |
Caenorhabditis elegans | WormBase | 25,634 | 602 | 291 | 2.07 |
Lophotrochozoa | |||||
Aplysia californica | NCBI | 1093 | 15 | 7 | 2.14 |
Capitella teleta | JGI | 32,415 | 642 | 376 | 1.71 |
Helobdella robusta | JGI | 23,432 | 420 | 325 | 1.29 |
Lottia gigantea | JGI | 23,851 | 492 | 337 | 1.46 |
Non-Bilateria | |||||
Amphimedon queenslandica | NCBI | 9908 | |||
Arabidopsis thaliana | TAIR | 28,952 | |||
Dictyostelium discoideum | Dictybase | 13,426 | |||
Hydra magnipapillata | NCBI | 17,563 | |||
Nematostella vectensis | JGI | 27,273 | |||
Saccharomyces cerevisiae | SGD | 6692 | |||
Trichoplax adhaerens | JGI | 11,520 |
Species | Set C (506) | Set M (160) | Set L (125) | (85) | Set A (34) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#P | #C | Ratio | #P | #C | Ratio | #P | #C | Ratio | #P | #C | Ratio | #P | #C | Ratio | |
Deuterostomia | |||||||||||||||
D. rerio | 1169 | 415 | 82.0 | 690 | 160 | 100 | 555 | 125 | 100 | 436 | 85 | 100 | 205 | 34 | 100 |
S. purpuratus | 636 | 254 | 50.2 | 233 | 89 | 55.6 | 288 | 103 | 82.4 | 175 | 63 | 74.1 | 90 | 34 | 100 |
M. musculus | 855 | 349 | 69.0 | 398 | 134 | 83.8 | 428 | 121 | 96.8 | 301 | 81 | 95.3 | 163 | 34 | 100 |
Ecdysozoa | |||||||||||||||
A. gambiae | 373 | 300 | 59.3 | 156 | 120 | 75.0 | 143 | 112 | 89.6 | 107 | 78 | 91.8 | 51 | 34 | 100 |
D. melanogaster | 964 | 379 | 74.9 | 494 | 160 | 100 | 387 | 116 | 92.8 | 317 | 85 | 100 | 143 | 34 | 100 |
C. elegans | 589 | 278 | 54.9 | 359 | 160 | 100 | 231 | 94 | 75.2 | 207 | 85 | 100 | 101 | 34 | 100 |
Lophotrochozoa | |||||||||||||||
C. teleta | 642 | 376 | 74.3 | 247 | 116 | 72.5 | 198 | 119 | 95.2 | 153 | 79 | 92.9 | 65 | 34 | 100 |
H. robusta | 420 | 325 | 64.2 | 165 | 109 | 68.1 | 160 | 115 | 92.0 | 110 | 75 | 88.2 | 48 | 34 | 100 |
L. gigantea | 492 | 337 | 66.6 | 224 | 117 | 73.1 | 217 | 121 | 96.8 | 169 | 81 | 95.3 | 84 | 34 | 100 |
[A. californica] | 15 | 7 | 01.4 | 7 | 4 | 2.5 | 3 | 2 | 1.6 | 3 | 2 | 2.4 | 1 | 1 | 2.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferretti, L.; Krämer-Eis, A.; Schiffer, P.H. Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria. Life 2020, 10, 182. https://doi.org/10.3390/life10090182
Ferretti L, Krämer-Eis A, Schiffer PH. Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria. Life. 2020; 10(9):182. https://doi.org/10.3390/life10090182
Chicago/Turabian StyleFerretti, Luca, Andrea Krämer-Eis, and Philipp H. Schiffer. 2020. "Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria" Life 10, no. 9: 182. https://doi.org/10.3390/life10090182
APA StyleFerretti, L., Krämer-Eis, A., & Schiffer, P. H. (2020). Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria. Life, 10(9), 182. https://doi.org/10.3390/life10090182