Cancer, Retrogenes, and Evolution
Abstract
:1. Introduction
2. Retrocopies and Their Functions
3. Retrogenes and Evolution
4. Cancer and Evolution
4.1. Species-Specific Features of Cancer Suppression
4.2. Evolution within Cancer Tumors
5. Retrogenes in Cancer
5.1. Increased Expression in Cancer
5.2. Decreased Expression in Cancer
5.3. Subtype-Specific Retrogenes
5.4. Stage-Specific Retrogenes
5.5. Treatment Response-Related Retrogenes
5.6. mRNA Sponging as the Main Retrocopy Mechanism in Cancer
6. Phylogeny of Cancer-Related Retrogenes
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brosius, J. Retroposons—Seeds of evolution. Science 1991, 251, 753. [Google Scholar] [CrossRef] [PubMed]
- Brosius, J. The contribution of RNAs and retroposition to evolutionary novelties. Genetica 2003, 118, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, M.R.; Makałowska, I. Protein-coding genes’ retrocopies and their functions. Viruses 2017, 9, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyana-Sundaram, S.; Kumar-Sinha, C.; Shankar, S.; Robinson, D.R.; Wu, Y.M.; Cao, X.; Asangani, I.A.; Kothari, V.; Prensner, J.R.; Lonigro, R.J.; et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 2012, 149, 1622–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Yuan, Y.; Zheng, S.; Yang, Y.; Li, J.; Edgerton, M.E.; Diao, L.; Xu, Y.; Verhaak, R.G.W.; Liang, H. The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat. Commun. 2014, 5, 3963. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Yang, L.; Mo, Y.Y. Role of pseudogenes in tumorigenesis. Cancers 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Grzybowska, E.A. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem. Biophys. Res. Commun. 2012, 424, 1–6. [Google Scholar] [CrossRef]
- Ciomborowska, J.; Rosikiewicz, W.; Szklarczyk, D.; Makałowski, W.; Makałowska, I. “Orphan” retrogenes in the human genome. Mol. Biol. Evol. 2013, 30, 384–396. [Google Scholar] [CrossRef]
- Cooke, S.L.; Shlien, A.; Marshall, J.; Pipinikas, C.P.; Martincorena, I.; Tubio, J.M.C.; Li, Y.; Menzies, A.; Mudie, L.; Ramakrishna, M.; et al. Processed pseudogenes acquired somatically during cancer development. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J. Long non-coding RNA transcribed from pseudogene PPIAP43 is associated with radiation sensitivity of small cell lung cancer cells. Oncol. Lett. 2019, 18, 4583–4592. [Google Scholar] [CrossRef] [Green Version]
- Donnem, T.; Micklem, K.; Pezzella, F. Evolution and cancer. In Oxford Textbook of Cancer Biology, 1st ed.; Pezzella, F., Tavassoli, M., Kerr, D.J., Eds.; Oxford University Press: Oxford, UK, 2019; pp. 33–41. [Google Scholar]
- Abegglen, L.M.; Caulin, A.F.; Chan, A.; Lee, K.; Robinson, R.; Campbell, M.S.; Kiso, W.K.; Schmitt, D.L.; Waddell, P.J.; Bhaskara, S.; et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA Damage in Humans. JAMA 2015, 314, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Bredberg, A.; Schmitz, B. Human cancer, the naked mole rat and faunal turnovers. Cancer Med. 2019, 8, 1652–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, F.; de Martino, M.; Petti, M.G.; Forzati, F.; Tornincasa, M.; Federico, A.; Arra, C.; Pierantoni, G.M.; Fusco, A. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 2014, 5, 8341–8354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poliseno, L.; Marranci, A.; Pandolfi, P.P. Pseudogenes in human cancer. Front. Med. 2015, 2, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Zhang, L. Burst of young retrogenes and independent retrogene formation in mammals. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.G.; Von Holdt, B.M.; Quignon, P.; Margulies, E.H.; Shao, S.; Mosher, D.S.; Spady, T.C.; Elkahloun, A.; Cargill, M.; Jones, P.G.; et al. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 2009, 325, 995–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toups, M.A.; Hahn, M.W. Retrogenes reveal the direction of sex-chromosome evolution in mosquitoes. Genetics 2010, 186, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Szcześniak, M.W.; Ciomborowska, J.; Nowak, W.; Rogozin, I.B.; Makałowska, I. Primate and rodent specific intron gains and the origin of retrogenes with splice variants. Mol. Biol. Evol. 2011, 28, 33–37. [Google Scholar] [CrossRef]
- Richardson, S.R.; Salvador-Palomeque, C.; Faulkner, G.J. Diversity through duplication: Whole-genome sequencing reveals novel gene retrocopies in the human population. BioEssays 2014, 36, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene duplication as a major force in evolution. J. Genet. 2013, 92, 155–161. [Google Scholar] [CrossRef]
- Kaessmann, H.; Vinckenbosch, N.; Long, M. RNA-based gene duplication: Mechanistic and evolutionary insights. Nat. Rev. Genet. 2009, 10, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhang, Y.E.; Long, M. New genes in Drosophila quickly become essential. Science 2010, 330, 1682–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubiak, M.R.; Szcześniak, M.W.; Makałowska, I. Complex analysis of retroposed genes’ contribution to human genome, proteome and transcriptome. Genes 2020, 11, 542. [Google Scholar] [CrossRef]
- Vinckenbosch, N.; Dupanloup, I.; Kaessmann, H. Evolutionary fate of retroposed gene copies in the human genome. Proc. Natl. Acad. Sci. USA 2006, 103, 3220–3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.Z.; Zheng, L.L.; Liao, J.Y.; Wang, M.H.; Wei, Y.; Guo, X.M.; Qu, L.H.; Ayala, F.J.; Lun, Z.R. Pseudogene-derived small interference RNAs regulate gene expression in African Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 2011, 108, 8345–8350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Guo, Z.-Y.; Zhang, R.; Xin, B.; Chen, R.; Zhao, J.; Wang, T.; Wen, W.-H.; Jia, L.-T.; Yao, L.-B.; et al. Pseudogene OCT4-pg4 functions as a natural microRNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 2013, 34, 1773–1781. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.J.; Schulz, R.; Woodfine, K.; Koltowska, K.; Beechey, C.V.; Peters, J.; Bourc’his, D.; Oakey, R.J. Regulation of alternative polyadenylation by genomic imprinting. Genes Dev. 2008, 22, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Bryzghalov, O.; Szcześniak, M.W.; Makałowska, I. Retroposition as a source of antisense long non-coding RNAs with possible regulatory functions. Acta Biochim. Pol. 2016, 63, 825–833. [Google Scholar] [CrossRef]
- Baertsch, R.; Diekhans, M.; James, W.J.; Haussler, D.; Brosius, J. Retrocopy contributions to the evolution of the human genome. BMC Genomics 2008, 9, 466. [Google Scholar] [CrossRef] [Green Version]
- Tutar, Y. Pseudogenes. Comp. Funct. Genomics 2012. [Google Scholar] [CrossRef] [Green Version]
- Parmley, J.L.; Urrutia, A.O.; Potrzebowski, L.; Kaessmann, H.; Hurst, L.D. Splicing and the evolution of proteins in mammals. PLoS Biol. 2007, 5, 0343–0353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Liu, S.; Zhang, X.; Li, W.B.; Chen, Y.; Huang, X.; Sun, L.; Luo, W.; Netzer, W.J.; Threadgill, R.; et al. A Functional Mouse Retroposed Gene Rps23r1 Reduces Alzheimer’s β-Amyloid Levels and Tau Phosphorylation. Neuron 2009, 64, 328–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abyzov, A.; Iskow, R.; Gokcumen, O.; Radke, D.W.; Balasubramanian, S.; Pei, B.; Habegger, L.; Lee, C.; Gerstein, M. Analysis of variable retroduplications in human populations suggests coupling of retrotransposition to cell division. Genome Res. 2013, 23, 2042–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabza, M.; Kubiak, M.R.; Danek, A.; Rosikiewicz, W.; Deorowicz, S.; Polański, A.; Makałowska, I. Inter-population Differences in Retrogene Loss and Expression in Humans. PLoS Genet. 2015, 11, 1005579. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Dupanloup, I.; Vinckenbosch, N.; Reymond, A.; Kaessmann, H. Emergence of young human genes after a burst of retroposition in primates. PLoS Biol. 2005, 3, 1970–1979. [Google Scholar] [CrossRef] [Green Version]
- Navarro, F.C.P.; Galante, P.A.F. A genome-wide landscape of retrocopies in primate genomes. Genome Biol. Evol. 2015, 7, 2265–2275. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, A.P. Expression of evolutionarily novel genes in tumors. Infect. Agent. Cancer 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Seluanov, A.; Gladyshev, V.N.; Vijg, J.; Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 2018, 18, 433–441. [Google Scholar] [CrossRef]
- McPherson, A.W.; Chan, F.C.; Shah, S.P. Observing clonal dynamics across spatiotemporal axes: A prelude to quantitative fitness models for cancer. Cold Spring Harb. Perspect. Med. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Efeyan, A.; Serrano, M. p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle 2007, 6, 1006–1010. [Google Scholar] [CrossRef]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacomelli, A.O.; Yang, X.; Lintner, R.E.; McFarland, J.M.; Duby, M.; Kim, J.; Howard, T.P.; Takeda, D.Y.; Ly, S.H.; Kim, E.; et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 2018, 50, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Kitsoulis, C.V.; Baxevanis, A.D.; Abatzopoulos, T.J. The occurrence of cancer in vertebrates: A mini review. J. Biol. Res. 2020, 27, 1–12. [Google Scholar] [CrossRef]
- Seim, I.; Ma, S.; Zhou, X.; Gerashchenko, M.V.; Lee, S.G.; Suydam, R.; George, J.C.; Bickham, J.W.; Gladyshev, V.N. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging 2014, 6, 879–899. [Google Scholar] [CrossRef] [Green Version]
- Keane, M.; Semeiks, J.; Webb, A.E.; Li, Y.I.; Quesada, V.; Craig, T.; Madsen, L.B.; van Dam, S.; Brawand, D.; Marques, P.I.; et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015, 10, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Azpurua, J.; Hine, C.; Vaidya, A.; Myakishev-Rempel, M.; Ablaeva, J.; Mao, Z.; Nevo, E.; Gorbunova, V.; Seluanov, A. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 2013, 499, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Ning, R.; Zeng, B.; Li, Y. Molecular evolution of PTEN pseudogenes in mammals. PLoS ONE 2016, 11, 1–12. [Google Scholar] [CrossRef]
- Gorbunova, V.; Hine, C.; Tian, X.; Ablaeva, J.; Gudkov, A.V.; Nevo, E.; Seluanov, A. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl. Acad. Sci. USA 2012, 109, 19392–19396. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, A.; Boddy, A.; Mallo, D.; Aktipis, A.; Maley, C.C.; Pepper, J.W. Natural selection in cancer biology: From molecular snowflakes to trait hallmarks. Cold Spring Harb. Perspect. Med. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Bardelli, A. Lesion-Directed Therapies and Monitoring Tumor Evolution Using Liquid Biopsies. Cold Spring Harb. Perspect. Med. 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Navas, P.M.; Wojtkowiak, J.W.; Gatenby, R.A. Application of Evolutionary Principles to Cancer Therapy. Cancer Res. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, S.; Swanton, C.; Taylor, B.S.; Costello, J.F. Treatment-Induced Mutagenesis and Selective Pressures Sculpt Cancer Evolution. Cold Spring Harb. Perspect. Med. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, T.; Yang, Z.; Jiang, C.; Seng, J. Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J. Cell. Mol. Med. 2018, 22, 4068–4075. [Google Scholar] [CrossRef] [PubMed]
- Fairbanks, D.J.; Fairbanks, A.D.; Heath Ogden, T.; Parker, G.J.; Maughan, P.J. NANOGP8: Evolution of a human-specific retro-oncogene. G3 2012, 2, 1447–1457. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Zhang, L.; Huang, Y.; He, T.; Zhang, L.; Zhao, X.; Zhou, X.; Zhou, D.; Yan, Y.; Zhou, J.; et al. Pseudogene PDIA3P1 promotes cell proliferation, migration and invasion, and suppresses apoptosis in hepatocellular carcinoma by regulating the p53 pathway. Cancer Lett. 2017, 407, 76–83. [Google Scholar] [CrossRef]
- Chen, X.; Wan, L.; Wang, W.; Xi, W.J.; Yang, A.G.; Wang, T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020, 10, 1479–1499. [Google Scholar] [CrossRef]
- Rosikiewicz, W.; Kabza, M.; Kosinski, J.G.; Ciomborowska-Basheer, J.; Kubiak, M.R.; Makalowska, I. RetrogeneDB-a database of plant and animal retrocopies. Database 2017, 2007, 1–11. [Google Scholar] [CrossRef]
- Poliseno, L.; Salmena, L.; Zhang, J.; Carver, B.; Haveman, W.J.; Pandolfi, P.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010, 465, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Rohozinski, J.; Edwards, C.L.; Anderson, M.L. Does expression of the retrogene UTP14c in the ovary pre-dispose women to ovarian cancer? Med. Hypotheses 2012, 78, 446–449. [Google Scholar] [CrossRef]
- Chen, B.; Wang, C.; Zhang, J.; Zhou, Y.; Hu, W.; Guo, T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int. 2018, 18. [Google Scholar] [CrossRef]
- Wang, Q.S.; Shi, L.L.; Sun, F.; Zhang, Y.F.; Chen, R.W.; Yang, S.L.; Hu, J.L. High Expression of ANXA2 Pseudogene ANXA2P2 Promotes an Aggressive Phenotype in Hepatocellular Carcinoma. Dis. Markers 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Li, D.; He, Y.; Zhang, F.; Qiao, M.; Chen, Y. The expression level of CSDAP1 in lung cancer and its clinical significance. Oncol. Lett. 2018, 16, 4361–4366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Chen, B.; Xing, J.; Wei, Z.; Liu, C.; Qiu, Y.; Lin, Y.; Ren, L. Upregulation of LGMNP1 confers radiotherapy resistance in glioblastoma. Oncol. Rep. 2019, 41, 3435–3443. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Cao, S.; Wang, Y.; Hu, Y.; Liu, H.; Li, J.; Chen, J.; Li, P.; Liu, J.; Wang, Q.; et al. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1α/VEGFA signalling in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2018, 37. [Google Scholar] [CrossRef]
- Wang, M.Y.; Chen, D.P.; Qi, B.; Li, M.Y.; Zhu, Y.Y.; Yin, W.J.; He, L.; Yu, Y.; Li, Z.Y.; Lin, L.; et al. Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence. Cell Death Dis. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Lou, W.; Ding, B.; Fan, W. High Expression of Pseudogene PTTG3P Indicates a Poor Prognosis in Human Breast Cancer. Mol. Ther. Oncolytics 2019, 14, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, W.; Li, Y.; Sun, F.; Lin, J.; Li, L. CKS1BP7, a Pseudogene of CKS1B, is Co-Amplified with IGF1R in Breast Cancers. Pathol. Oncol. Res. 2018, 24, 223–229. [Google Scholar] [CrossRef]
- Qian, Y.Y.; Li, K.; Liu, Q.Y.; Liu, Z.S. Long non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma. Oncotarget 2017, 8, 107859–107869. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Deng, L.; Deng, K.; Wang, H.; Shan, T.; Zhou, H.; Liang, Z.; Xia, J.; Li, C. Pseudogene PTENP1 Suppresses Gastric Cancer Progression by Modulating PTEN. AntiCancer Agents Med. Chem. 2016, 16, 456–464. [Google Scholar] [CrossRef]
- Yu, G.; Yao, W.; Gumireddy, K.; Li, A.; Wang, J.; Xiao, W.; Chen, K.; Xiao, H.; Li, H.; Tang, K.; et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 2014, 13, 3086–3097. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Ishida, M.; Li, L.; Saito, A.; Kamiya, A.; Hamilton, J.P.; Fu, R.; Olaru, A.V.; An, F.; Popescu, I.; et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma. Oncotarget 2015, 6, 5666–5677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutnam, Z.J.; Du, W.W.; Yang, W.; Yang, X.; Yang, B.B. The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, Q.; Wang, X. Transcriptional landscape of human cancers. Oncotarget 2017, 8, 34534–34551. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhu, H.; Wu, X.; Xie, X.; Huang, G.; Xu, X.; Li, S.; Xing, C. Downregulated pseudogene CTNNAP1 promote tumor growth in human cancer by downregulating its cognate gene CTNNA1 expression. Oncotarget 2016, 7, 55518–55528. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Niu, S.; Ma, X.; Zhang, P.; Gao, Y.; Fan, Y.; Pang, H.; Gong, H.; Shen, D.; Gu, L.; et al. RhoB acts as a tumor suppressor that inhibits malignancy of clear cell renal cell carcinoma. PLoS ONE 2016, 11, e0157599. [Google Scholar] [CrossRef] [PubMed]
- Mazieres, J.; Antonia, T.; Daste, G.; Muro-Cacho, C.; Berchery, D.; Tillement, V.; Pradines, A.; Sebti, S.; Favre, G. Loss of RhoB Expression in Human Lung Cancer Progression. Clin. Cancer Res. 2004, 10, 2742–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Tang, Q.; Qiu, M.; Lang, N.; Li, M.; Zheng, Y.; Bi, F. MiR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett. 2011, 585, 2998–3005. [Google Scholar] [CrossRef]
- Júnior, A.P.; de Sousa, V.P.L.; Esposito, F.; de Martino, M.; Forzati, F.; de Moreira, F.C.B.; de Simão, T.A.; Nasciutti, L.E.; Fusco, A.; Pinto, L.F.R.; et al. Overexpression of HMGA1 figures as a potential prognostic factor in endometrioid endometrial carcinoma (EEC). Genes 2019, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- De Martino, M.; Forzati, F.; Arra, C.; Fusco, A.; Esposito, F. HMGA1-pseudogenes and cancer. Oncotarget 2016, 7, 28724–28735. [Google Scholar] [CrossRef]
- Zhou, Y.; He, P.; Xie, X.; Sun, C. Knockdown of SUMO1P3 represses tumor growth and invasion and enhances radiosensitivity in hepatocellular carcinoma. Mol. Cell. Biochem. 2019, 450, 125–134. [Google Scholar] [CrossRef]
- Mei, D.; Song, H.; Wang, K.; Lou, Y.; Sun, W.; Liu, Z.; Ding, X.; Guo, J. Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association. Med. Oncol. 2013, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-M.; Wang, P.; Liu, X.-M.; Zhang, Y.-J. LncRNA SUMO1P3 drives colon cancer growth, metastasis and angiogenesis. Am. J. Trans. Res. 2017, 9, 5461. [Google Scholar]
- Zhang, J.; Wang, X.; Chen, B.; Xiao, Z.; Li, W.; Lu, Y.; Dai, J. The human pluripotency gene NANOG/NANOGP8 is expressed in gastric cancer and associated with tumor development. Oncol. Lett. 2010, 1, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, N.; Nimura, K.; Nagano, H.; Yamaguchi, S.; Nonomura, N.; Kaneda, Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget 2015, 6, 22361–22374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, M.; Yuan, M.; Liao, H.; Chen, J.; Xie, B.; Yan, D.; Xi, X.; Xu, X.; Zhang, Z.; Feng, Y. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol. Rep. 2015, 33, 1745–1752. [Google Scholar] [CrossRef] [Green Version]
- Ganapathi, M.K.; Jones, W.D.; Sehouli, J.; Michener, C.M.; Braicu, I.E.; Norris, E.J.; Biscotti, C.V.; Vaziri, S.A.J.; Ganapathi, R.N. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int. J. Cancer 2016, 138, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Sun, C.; Huang, M.; Liu, Y.; Qi, F.; Liu, L.; Wen, J.; Liu, J.; Xie, K.; Ma, H.; et al. A genetic variant in pseudogene E2F3P1 contributes to prognosis of hepatocellular carcinoma. J. Biomed. Res. 2014, 28, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, P. Retropozycja Genów w Tkankach Nowotworowych. Master’s Thesis, Adam Mickiewicz University, Poznan, Poland, 2018. [Google Scholar]
- Huang, M.; Prendergast, G.C. RhoB in cancer suppression. Histol. Histopathol. 2006, 21, 213–218. [Google Scholar] [CrossRef]
- Yamulla, R.J.; Nalubola, S.; Flesken-Nikitin, A.; Nikitin, A.Y.; Schimenti, J.C. Most Commonly Mutated Genes in High-Grade Serous Ovarian Carcinoma Are Nonessential for Ovarian Surface Epithelial Stem Cell Transformation. Cell Rep. 2020, 32. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, C.; Shen, H.; He, B.Z.; Yu, D.; Jiang, S.; Zhao, S.; Gao, Z.; Zhu, Z.; Chen, X.; et al. GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Res. 2019, 29, 682–696. [Google Scholar] [CrossRef]
- Goemann, I.M.; Marczyk, V.R.; Recamonde-Mendoza, M.; Wajner, S.M.; Graudenz, M.S.; Maia, A.L. Decreased expression of the thyroid hormone-inactivating enzyme type 3 deiodinase is associated with lower survival rates in breast cancer. Sci. Rep. 2020, 10, 13914. [Google Scholar] [CrossRef] [PubMed]
- Jan, Y.H.; Tsai, H.Y.; Yang, C.J.; Huang, M.S.; Yang, Y.F.; Lai, T.C.; Lee, C.H.; Jeng, Y.M.; Huang, C.Y.; Su, J.L.; et al. Adenylate kinase-4 is a marker of poor clinical outcomes that promotes metastasis of lung cancer by downregulating the transcription factor ATF3. Cancer Res. 2012, 72, 5119–5129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.Z.; Bin, H.; Chen, A.J.; Xin, Z.; Xu, R.; Jian, W.; Li, X.G. High expression of RAB43 predicts poor prognosis and is associated with epithelial-mesenchymal transition in gliomas. Oncol. Rep. 2017, 37, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimaraes, J.C.; Zavolan, M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 2016, 17, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.J.; Petrov, D.A. Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol. Evol. 2010, 2, 393–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matyunina, E.A.; Emelyanov, A.V.; Kurbatova, T.V.; Makashov, A.A.; Mizgirev, I.V.; Kozlov, A.P. Evolutionarily novel genes are expressed in transgenic fish tumors and their orthologs are involved in development of progressive traits in humans. Infect. Agent. Cancer 2019, 14, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GTEx Portal. Available online: https://gtexportal.org/home/ (accessed on 14 December 2020).
Retrocopy | Ensembl ID | RetrogeneDB ID [58] | Chromosome | Parental Gene | Cancer Type |
---|---|---|---|---|---|
KRASP1 | ENSG00000220635 | retro_hsap_3474 | 6 | KRAS | prostate cancer [59] |
UTP14C | ENSG00000253797 | retro_hsap_29 | 13 | UTP14A | ovarian cancer [60] |
MSL3P1 | ENSG00000224287 | retro_hsap_2401 | 2 | MSL3 | renal cell carcinoma [61] |
ANXA2P2 | ENSG00000231991 | retro_hsap_4150 | 9 | ANXA2 | hepatocellular carcinoma [62] |
CSDAP1 (YBX3P1) | ENSG00000261614 | retro_hsap_1674 | 16 | YBX3 | lung adenocarcinoma [63] |
LGMNP1 | ENSG00000214269 | retro_hsap_1272 | 13 | LGMN | glioblastoma [64] |
UBE2CP3 | ENSG00000250384 | retro_hsap_2935 | 4 | UBE2C | hepatocellular carcinoma [65] |
RACGAP1P | ENSG00000257331 | - | 12 | RACGAP1 | hepatocellular carcinoma [66] |
PTTG3P | ENSG00000213005 | - | 8 | PTTG1 | breast cancer [67] |
CKS1BP7 | ENSG00000254331 | - | 8 | CKS1B | breast cancer [68] |
PTENP1 | ENSG00000237984 | retro_hsap_4245 | 9 | PTEN | hepatocellular carcinoma [69], gastric cancer [70], renal cell carcinoma [71] |
INTS6P1 | ENSG00000250492 | retro_hsap_3307 | 5 | INTS6 | hepatocellular carcinoma [72] |
TUSC2P1 | ENSG00000285470 | - | Y | TUSC2 | esophageal squamous cell carcinoma [73] |
NKAPL | ENSG00000189134 | retro_hsap_15 | 6 | NKAP | kidney renal papillary cell carcinoma, pancreatic adenocarcinoma, adenoid cystic carcinoma [74] |
CTNNA1P1 | ENSG00000249026 | - | 5 | CTNNA1 | colorectal cancer [75] |
RHOB | ENSG00000143878 | retro_hsap_108 | 2 | RHOA | renal cell carcinoma [76], lung cancer [77], colorectal cancer [78] |
HMGA1P6 | ENSG00000233440 | retro_hsap_1175 | 13 | HMGA1 | endometrial carcinoma [79], ovarian carcinosarcoma, thyroid carcinoma [14] |
HMGA1P7 | ENSG00000216753 | - | 6 | HMGA1 | endometrial carcinoma [79], ovarian carcinosarcoma, thyroid carcinoma [14], breast cancer [80] |
SUMO1P3 | ENSG00000235082 | retro_hsap_240 | 1 | SUMO1 | hepatocellular carcinoma [81], gastric cancer [82], colorectal cancer [83] |
NANOGP8 | ENSG00000255192 | retro_hsap_1549 | 15 | NANOG | gastric cancer [84], prostate cancer [85] |
POU5F1P4 (OCT4-pg4) | ENSG00000237872 | - | 1 | POU5F1 | hepatocellular carcinoma [27] |
POU5F1P5 (OCT4-pg5) | ENSG00000236375 | - | 10 | POU5F1 | endometrial carcinoma [86] |
SLC6A6P1 | ENSG00000226818 | retro_hsap_2498 | 21 | SLC6A6 | ovarian cancer [87] |
PDIA3P1 | ENSG00000180867 | retro_hsap_217 | 1 | PDIA3 | multiple myeloma [56] |
PPIAP43 | ENSG00000255059 | retro_hsap_816 | 11 | PPIA | small cell lung cancer [10] |
FTH1P3 | ENSG00000213453 | retro_hsap_2240 | 2 | FTH1 | breast cancer [54] |
E2F3P1 | ENSG00000267046 | retro_hsap_1749 | 17 | E2F3 | hepatocellular carcinoma [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staszak, K.; Makałowska, I. Cancer, Retrogenes, and Evolution. Life 2021, 11, 72. https://doi.org/10.3390/life11010072
Staszak K, Makałowska I. Cancer, Retrogenes, and Evolution. Life. 2021; 11(1):72. https://doi.org/10.3390/life11010072
Chicago/Turabian StyleStaszak, Klaudia, and Izabela Makałowska. 2021. "Cancer, Retrogenes, and Evolution" Life 11, no. 1: 72. https://doi.org/10.3390/life11010072
APA StyleStaszak, K., & Makałowska, I. (2021). Cancer, Retrogenes, and Evolution. Life, 11(1), 72. https://doi.org/10.3390/life11010072