Water–Sulfuric Acid Foam as a Possible Habitat for Hypothetical Microbial Community in the Cloud Layer of Venus
Abstract
:1. Introduction
1.1. How Could a Microbial Community Have Been Formed in the Clouds of Venus during Its Catastrophic Overheating?
1.2. The Hypothesis of Water–Sulfuric Acid Foam in Venusian Clouds as a New Type of Ecological Niche
1.3. The Main Physical-Chemical Properties of Liquid-Gas Foams
1.4. Formation and Stabilization of Water-Sulfuric Acid Foam with Different Additives
1.5. The Basic Mechanisms of Foam Formation in Earth Ecosystems
1.6. The Biogenic and Abiogenic Stabilizers of Foam Structure
1.7. The Synthesis of Complex Organic Compounds on Venus’s Surface and Their Possible Contribution to the Stabilization of a Hypothetical Habitable Foam in the Venusian Cloud Layer
1.8. The Basic Conditions for the Stable Existence of Microbial Community
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donahue, T.M.; Grinspoon, D.H.; Hartle, R.E.; Hodges, R.R. Ion/neutral escape of hydrogen and deuterium: Evolution of water. In Venus II Geology, Geophysics, Atmosphere and Solar Wind Environment; Bougher, S.W., Hunten, D.M., Phillips, R.J., Eds.; University of Arizona Press: Tucson, AZ, USA, 1997; pp. 414–585. [Google Scholar]
- Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefière, E. The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res. Planets 2017, 122, 1458–1486. [Google Scholar] [CrossRef]
- Kane, S.R.; Arney, G.; Crisp, D.; Domagal-Goldman, S.; Glaze, L.S.; Goldblatt, C.; Grinspoon, D.; Head, J.W.; Lenardic, A.; Unterborn, G.; et al. Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets 2019, 124, 2015–2028. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Petkowski, J.J.; Gao, P.; Bains, W.; Bryan, N.C.; Ranjan, S.; Greaves, J. The Venusian lower atmosphere haze as a depot for desiccated microbial life: A proposed life cycle for persistence of the Venusian aerial biosphere. Astrobiology 2021, 21. [Google Scholar] [CrossRef]
- Way, M.J.; Del Genio, A.D. Venusian habitable climate scenarios: Modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 2020, 125, e2019JE006276. [Google Scholar] [CrossRef] [Green Version]
- Morowitz, H.; Sagan, C. Life in the Clouds of Venus? Nature 1967, 215, 1259–1260. [Google Scholar] [CrossRef]
- Grinspoon, D.H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 1993, 363, 428–431. [Google Scholar] [CrossRef]
- Cockell, C.S. Life on Venus. Planet. Space Sci. 1999, 47, 1487–1501. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Irwin, L.N. Reassessing the possibility of Life on Venus: Proposal for an astrobiology mission. Astrobiology 2002, 2, 197–202. [Google Scholar] [CrossRef]
- Donahue, T.M.; Hoffman, J.H.; Hodges, R.R.; Watson, A.J. Venus was wet: A measurement of the ratio of deuterium to hydrogen. Science 1982, 216, 630–641. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Makuch, D.; Grinspoon, D.H.; Abbas, O.; Irwin, L.N.; Bullock, M.A. A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 2004, 4, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Way, M.J.; Del Genio, A.D.; Kiang, N.Y.; Sohl, L.E.; Grinspoon, D.H.; Aleinov, I.; Kelley, M.; Clune, T. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 2016, 43, 8376–8383. [Google Scholar] [CrossRef]
- Grinspoon, D.H.; Bullock, M.A. Astrobiology and Venus exploration. In Exploring Venus as a Terrestrial Planet; Esposito, L.W., Stafan, E.R., Cravens, T.E., Eds.; American Geophysical Union: Washington, DC, USA, 2007; pp. 191–206. [Google Scholar]
- Limaye, S.S.; Mogul, R.; Smith, D.J.; Ansari, A.H.; Słowik, G.P.; Vaishampayan, P. Venus’ spectral signatures and the potential for life in the clouds. Astrobiology 2018, 18, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Izenberg, N.R.; Gentry, D.M.; Smith, D.J.; Gilmore, M.S.; Grinspoon, D.H.; Bullock, M.A.; Boston, P.J.; Słowik, G.P. The Venus life equation. Astrobiology 2021, 21. [Google Scholar] [CrossRef]
- Milojevic, T.; Weckwerth, W. Molecular mechanisms of microbial survivability in outer Space: A systems biology approach. Front. Microbiol. 2020, 11, 923. [Google Scholar] [CrossRef]
- Kölbl, D.; Blazevic, A.; Albu, M.; Fasching, C.; Milojevic, T. Desiccation of the extreme thermoacidophile Metallosphaera sedula grown on terrestrial and extraterrestrial materials. Front. Astron. Space Sci. 2020, 7, 41. [Google Scholar] [CrossRef]
- Kotsyurbenko, O.R.; Cordova, J.A., Jr.; Belov, A.A.; Cheptsov, V.S.; Khrunyk, J.; Kölbl, D.; Kryuchkova, M.O.; Milojevic, T.; Mogul, R.; Sasaki, S.; et al. Exobiology of Venus clouds: New insights into habitability through terrestrial models and methods of detection. Astrobiology 2021, 21. [Google Scholar] [CrossRef]
- Siliakus, M.F.; van der Oost, J.; Kengen, S.W.M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 2017, 21, 651–670. [Google Scholar] [CrossRef] [PubMed]
- DasSarma, S.; DasSarma, P.; Laye, V.J.; Schwieterman, E.W. Extremophilic models for astrobiology: Haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 2020, 24, 31–41. [Google Scholar] [CrossRef]
- Sasselov, D.D.; Grotzinger, J.P.; Sutherland, J.D. The origin of life as a planetary phenomenon. Sci. Adv. 2020, 6, eaax3419. [Google Scholar] [CrossRef] [Green Version]
- Salvador-Castell, M.; Golub, M.; Erwin, N.; Demé, B.; Brooks, N.J.; Winter, R.; Peters, J.; Oger, P.M. Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Commun. Biol. 2021, 4, 653–668. [Google Scholar] [CrossRef]
- Canganella, F.; Wiegel, J. Anaerobic thermophiles. Life 2014, 4, 77–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the extremes: Extremophiles and the limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 1785. [Google Scholar] [CrossRef] [Green Version]
- Bains, W.; Petkowski, J.J.; Zhan, Z.; Seager, S. Evaluating Alternatives to Water as Solvents for Life: The Example of Sulfuric Acid. Life 2021, 11, 400. [Google Scholar] [CrossRef]
- Benison, K.C.; O’Neill, W.K.; Blain, D.; Hallsworth, J.E. Water activities of acid brine lakes approach the limit for Life. Astrobiology 2021, 21, 729–740. [Google Scholar] [CrossRef]
- Denkov, N.; Tcholakova, S.; Golemanov, K.; Ananthpadmanabhanb, K.P.; Lips, A. The role of surfactant type and bubble surface mobility in foam rheology. Soft Matter 2009, 5, 3389–3408. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Medronho, B.; Filipe, A.; Mira, I.; Lindman, B.; Edlund, H.; Norgren, M. Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers 2019, 11, 1570. [Google Scholar] [CrossRef] [Green Version]
- Adetunji, A.I.; Olaniran, A.O. Production and potential biotechnological applications of microbial surfactants. Saudi J. Biol. Sci. 2021, 28, 669–679. [Google Scholar] [CrossRef]
- Frankel, S.P.; Mysels, K.J. Simplified theory of reflectometric thickness measurement of structured soap and related films. J. Appl. Phys. 1966, 37, 3725–3735. [Google Scholar] [CrossRef]
- Yuan, F.; Yang, C.; Zhong, P. Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow. Proc. Natl. Acad. Sci. USA 2015, 112, E7039–E7047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lajoinie, G.; De Cock, I.; Coussios, C.C.; Lentacker, I.; Le Gac, S.; Stride, E.; Versluis, M. In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications. Biomicrofluidics 2016, 10, 011501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Luo, Y.; Liu, Y.; Li, S.; Xi, Z.; Zhao, L.; Cen, L.; Lu, E. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers 2020, 12, 780. [Google Scholar] [CrossRef] [Green Version]
- Conroy, M.; Ananth, R.; Fleming, J.; Taylor, J.; Farley, J. Liquid Loss from Advancing Aqueous Foams with Very Low Water Content; Navy Technology Center for Safety and Survivability Chemistry Division: Arlington, VA, USA, 2011. [Google Scholar]
- Gunduz, O.; Ahmad, Z.; Stride, E.; Tamerler, C.; Edirisinghe, M. Bioinspired bubble design for particle generation. J. R. Soc. Interface 2012, 9, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Anestopoulos, I.; Kiousi, D.-E.; Klavaris, A.; Maijo, M.; Serpico, A.; Suarez, A.; Sanchez, G.; Salek, K.; Chasapi, S.A.; Zompra, A.A.; et al. Marine-derived surface active agents: Health-promoting properties and blue biotechnology-based applications. Biomolecules 2020, 10, 885. [Google Scholar] [CrossRef] [PubMed]
- Sellegri, K.; Nicosia, A.; Freney, E.; Uitz, J.; Thyssen, M.; Grégori, G.; Engel, A.; Zäncker, B.; Haëntjens, N.; Mas, S.; et al. Surface ocean microbiota determine cloud precursors. Sci. Rep. 2021, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Twigg, M.S.; Baccile, N.; Banat, I.M.; Deziel, E.; Marchant, R.; Roelants, S.I.; Van Bogaert, N.A. Microbial biosurfactant research: Time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb. Biotechnol. 2021, 14, 147–170. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Li, Z.; Li, B.; Husein, M.; Shi, D.; Zhang, C.; Zhou, T. Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks. Sci. Rep. 2017, 7, 5063. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Yang, Y. Study of the air-entraining behavior based on the interactions between cement particles and selected cationic, anionic and nonionic surfactants. Materials 2020, 13, 3514. [Google Scholar] [CrossRef]
- Zimnyakfov, D.; Zdrajevsky, R.; Minaev, N.; Epifanov, E.; Popov, V.; Ushakova, O. Extreme foaming modes for SCF-plasticized polylactides: Quasi-adiabatic and quasi-isothermal foam expansion. Polymers 2020, 12, 1055. [Google Scholar] [CrossRef]
- Correia, E.L.; Brown, N.; Razavi, S. Janus particles at fluid interfaces: Stability and interfacial rheology. Nanomaterials 2021, 11, 374. [Google Scholar] [CrossRef]
- Furuta, Y.; Oikawa, N.; Kurita, R. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam. Sci. Rep. 2016, 6, 37506. [Google Scholar] [CrossRef]
- Fedorets, A.A.; Bormashenko, E.; Dombrovsky, L.A.; Nosonovsky, M. Droplet clusters: Nature-inspired biological reactors and aerosols. Philos. Trans. R. Soc. A 2019, 377, 20190121. [Google Scholar] [CrossRef] [Green Version]
- Babenko, V.A.; Bunkin, N.F.; Sychev, A.A. Role of gas nanobubbles in nonlinear hyper-Raman scattering of light in water. J. Opt. Soc. Am. B 2020, 37, 2805–2814. [Google Scholar] [CrossRef]
- Rahlff, J.; Stolle, C.; Giebel, H.-A.; Mustaffa, N.I.H.; Wurl, O.; Herlemann, D.P.R. Sea foams are ephemeral hotspots for distinctive bacterial communities contrasting sea-surface microlayer and underlying surface water. FEMS Microb. Ecol. 2021, 97, fiab035. [Google Scholar] [CrossRef]
- Alty, T. The origin of the electrical charge on small particles in water. Proc. R. Soc. Lond. Ser. A 1926, 122, 235–251. [Google Scholar]
- Bunkin, N.F.; Bunkin, F.V. Bubbstons: Stable microscopic gas bubbles in very dilute electrolytic solutions. J. Exp. Theor. Phys. 1992, 74, 271–278. [Google Scholar]
- Bunkin, N.F.; Bunkin, F.V. Bubston structure of water and electrolyte water solutions. Uspekhi Fiz. Nauk 2016, 186, 933–952. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Yurchenko, S.O.; Suyazov, N.V.; Shkirin, A.V. Structure of the nanobubble clusters of dissolved air in liquid media. J. Biol. Phys. 2012, 38, 121–152. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wu, Y.; Lee, J.G.; He, L.; Rother, G.; Fameau, A.-L.; Shelton, W.A.; Bharti, B. Adsorption of fatty acid molecules on amine-functionalized silica nanoparticles: Surface organization and foam stability. Langmuir 2020, 36, 3703–3712. [Google Scholar] [CrossRef]
- Raza, M.Q.; Kumar, N.; Ra, R. Surfactants for bubble removal against buoyancy. Sci. Rep. 2016, 6, 19113. [Google Scholar] [CrossRef]
- Yao, X.; Yi, P.; Zhao, G.; Sun, X.; Dai, C. A study of the stability mechanism of the dispersed particle gel three-phase foam using the interfacial dilational rheology method. Materials 2018, 11, 699. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Liao, K.; Tang, B.; Jiang, L.; Huang, W. Applications of graphene and its derivatives in the upstream oil and gas industry: A systematic review. Nanomaterials 2020, 10, 1013. [Google Scholar] [CrossRef]
- Snytnikov, V.N. Chemical Base of Hypothetical Life on Venus; Venera-D Landing Sites Selection and Cloud Layer Habitability Workshop 2019; Space Research Institute: Moscow, Russia, 2019; Available online: http://venera-d.cosmos.ru/uploads/media/7_-_Snytnikov-2019-Venera-D.pdf (accessed on 1 November 2019).
- Filiberto, J.; Trang, D.; Treiman, A.H.; Gilmore, M.S. Present-day volcanism on Venus as evidenced from weathering rates of olivine. Sci. Adv. 2020, 6, eaax7445. [Google Scholar] [CrossRef] [Green Version]
- Persson, M.Y.; Ramstad, R.; Schillings, A.; Masunaga, K.; Nilsson, H.; Fedorov, A.; Barabash, S. Global Venus-Solar wind coupling and oxygen ion escape. Geophys. Res. Lett. 2021, 48, e2020GL091213. [Google Scholar] [CrossRef]
- Ksanfomality, L.V.; Zelenyi, L.M.; Parmon, V.N.; Snytnikov, V.N. Hypothetical signs of life on Venus: Revising results of 1975–1982 TV experiments. Phys.-Uspekhi 2019, 62, 378–404. [Google Scholar] [CrossRef]
- Yu, H.; Liu, G.; Jin, R.; Wang, J.; Zhou, J. Facilitated Fe(II) oxidation but inhibited denitrification by reduced graphene oxide during nitrate-dependent Fe(II) Oxidation. ACS Earth Space Chem. 2019, 3, 1594–1602. [Google Scholar] [CrossRef]
- Martínez-Espinosa, R.M. Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments. Int. J. Mol. Sci. 2020, 21, 4228. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Luque, R.; Campelo, J.M.; Colmenares, F.; Karpiński, Z.; Romero, A.A. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: An overview. Materials 2009, 2, 2228–2258. [Google Scholar] [CrossRef]
- Zavarzin, G.A. Microbial Cycles. In Encyclopedia of Ecology; Jørgensen, S.E., Brian, D.F., Eds.; Elsevier: Oxford, UK, 2008; pp. 2335–2341. [Google Scholar]
- Zavarzin, G.A.; Zhilina, T.N. Anaerobic chemotrophic alkaliphiles. In Journey to Diverse Microbial Worlds; Seckbach, J., Ed.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2000; pp. 191–208. [Google Scholar]
- Kotsyurbenko, O.R.; Glagolev, M.V.; Sabrekov, A.F.; Terenieva, I.E. Systems approach to the study of microbial methanogenesis in West-Siberian wetlands. Environ. Dynam. Glob. Clim. Chang. 2020, 11, 54–68. [Google Scholar] [CrossRef]
- Milojevic, T.; Kölbl, D.; Ferrière, L.; Albu, M.; Kish, A.; Flemming, R.L.; Koeberl, C.; Blazevic, A.; Zebec, Z.; Rittmann, S.K.-M.R.; et al. Exploring the microbial biotransformation of extraterrestrial material on nanometer scale. Sci. Rep. 2019, 9, 18028. [Google Scholar] [CrossRef]
- Ricouviera, J.; Tabelinga, P.; Yazhgu, P. Foam as a self-assembling amorphous photonic band gap material. Proc. Natl. Acad. Sci. USA 2019, 116, 9202–9207. [Google Scholar] [CrossRef] [Green Version]
Liquid Phase | H2O | H2SO4 50% | H2SO4 75% | |
---|---|---|---|---|
Additive | ||||
no additive | 0 | 0 | 0 | |
Archaea biomass ** | 18 * | 12 | 8 | |
eukaryotic cells *** (1% dry weight) | 17 | 6 | 2 | |
colloidal iron FeCl3 (1%) | 0 | 0 | 4 | |
polyvinyl alcohol (1%) | 8 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skladnev, D.A.; Karlov, S.P.; Khrunyk, Y.Y.; Kotsyurbenko, O.R. Water–Sulfuric Acid Foam as a Possible Habitat for Hypothetical Microbial Community in the Cloud Layer of Venus. Life 2021, 11, 1034. https://doi.org/10.3390/life11101034
Skladnev DA, Karlov SP, Khrunyk YY, Kotsyurbenko OR. Water–Sulfuric Acid Foam as a Possible Habitat for Hypothetical Microbial Community in the Cloud Layer of Venus. Life. 2021; 11(10):1034. https://doi.org/10.3390/life11101034
Chicago/Turabian StyleSkladnev, Dmitry A., Sergei P. Karlov, Yuliya Y. Khrunyk, and Oleg R. Kotsyurbenko. 2021. "Water–Sulfuric Acid Foam as a Possible Habitat for Hypothetical Microbial Community in the Cloud Layer of Venus" Life 11, no. 10: 1034. https://doi.org/10.3390/life11101034
APA StyleSkladnev, D. A., Karlov, S. P., Khrunyk, Y. Y., & Kotsyurbenko, O. R. (2021). Water–Sulfuric Acid Foam as a Possible Habitat for Hypothetical Microbial Community in the Cloud Layer of Venus. Life, 11(10), 1034. https://doi.org/10.3390/life11101034