KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Comparison of the Amino Acid Sequence of TcLAP with Other Orthologous LAPs and Analysis of Their Phylogenetic Relationship
2.2. Building of hLAP3 3D-Model
2.3. Molecular Docking
2.4. TcLAP Aminopeptidase Activity Inhibition Assays
2.5. Obtainment of Protein Extracts from Epimastigotes of Trypanosoma cruzi CL Brener
2.6. M17-Type Aminopeptidase Activity Inhibition Assays in Protein Extracts from Epimastigotes of Trypanosoma cruzi CL Brener
2.7. In Vitro Measurement of the Anti-Trypanosomal Activity of KBE009 against Trypanosoma cruzi Epimastigotes
2.8. In Vitro Measurement of the KBE009 Cytotoxicity against Primary Cultures of Human Dermal Fibroblasts
3. Results
3.1. TcLAP Is Quite Divergent and Does Not Share a High Identity with the hLAP
3.2. The Bestatin Derivative Molecule KBE009 Inhibits the Activity of the Recombinant TcLAP and Native M17-Type LAP Activity in Parasite Protein Extracts
3.3. KBE009 Inhibits the Proliferation of Epimastigotes of T. cruzi
3.4. 3D Protein Structure of TcLAP and hLAP3 Reveals Differences at the N-Terminus
3.5. KBE009 Docking Prediction Shows That the Peptidomimetic Molecule Bears More Affinity for TcLAP Than for hLAP3
3.6. KBE009 Meets the Criteria of Drug-Likeness
3.7. Medicinal Chemistry Analysis of KBE009 Predicts Acceptable Lead-Likeness Parameters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alonso-Padilla, J.; Cortés-Serra, N.; Pinazo, M.J.; Bottazzi, M.E.; Abril, M.; Barreira, F.; Sosa-Estani, S.; Hotez, P.J.; Gascón, J. Strategies to enhance access to diagnosis and treatment for Chagas disease patients in Latin America. Expert Rev. Anti-Infect. Ther. 2019, 17, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas Disease: From Discovery to a Worldwide Health Problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Chagas Disease (Also Known as American Trypanosomiasis). Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 21 April 2021).
- Malik, L.H.; Singh, G.D.; Amsterdam, E.A. The Epidemiology, Clinical Manifestations, and Management of Chagas Heart Disease. Clin. Cardiol. 2015, 38, 565–569. [Google Scholar] [CrossRef]
- Carod-Artal, F.J. Trypanosomiasis, cardiomyopathy and the risk of ischemic stroke. Expert Rev. Cardiovasc. Ther. 2010, 8, 717–728. [Google Scholar] [CrossRef]
- Echavarría, N.G.; Echeverría, L.E.; Stewart, M.; Gallego, C.; Saldarriaga, C. Chagas Disease: Chronic Chagas Cardiomyopathy. Curr. Probl. Cardiol. 2021, 46, 100507. [Google Scholar] [CrossRef]
- Py, M.O. Neurologic Manifestations of Chagas Disease. Curr. Neurol. Neurosci. Rep. 2011, 11, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Mansoldo, F.; Carta, F.; Angeli, A.; Cardoso, V.; Supuran, C.; Vermelho, A. Chagas Disease: Perspectives on the Past and Present and Challenges in Drug Discovery. Molecules 2020, 25, 5483. [Google Scholar] [CrossRef] [PubMed]
- Verhelst, S.H.L. Intramembrane proteases as drug targets. FEBS J. 2017, 284, 1489–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajid, M.; Robertson, S.A.; Brinen, L.S.; McKerrow, J.H. Cruzain. Cancer Biol. Nucl. Envel. 2011, 1, 100–115. [Google Scholar] [CrossRef]
- Alvarez, V.; Niemirowicz, G.; Cazzulo, J.J. The peptidases of Trypanosoma cruzi: Digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim. Biophys. Acta Proteins Proteom. 2012, 1824, 195–206. [Google Scholar] [CrossRef]
- Cadavid-Restrepo, G.; Gastardelo, T.S.; Faudry, E.; de Almeida, H.; Bastos, I.M.; Negreiros, R.S.; Lima, M.M.; Assumpção, T.C.; Almeida, K.C.; Ragno, M.; et al. The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases. BMC Biochem. 2011, 12, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.; Takeuchi, T. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiot. 1976, 29, 97–99. [Google Scholar] [CrossRef]
- Trochine, A.; Creek, D.J.; Faral-Tello, P.; Barrett, M.P.; Robello, C. Bestatin Induces Specific Changes in Trypanosoma cruzi Dipeptide Pool. Antimicrob. Agents Chemother. 2015, 59, 2921–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Bacerio, J.; Maluf, S.E.C.; Méndez, Y.; Pascual, I.; Florent, I.; Melo, P.M.; Budu, A.; Ferreira, J.C.; Moreno, E.; Carmona, A.K.; et al. KBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library. Bioorg. Med. Chem. 2017, 25, 4628–4636. [Google Scholar] [CrossRef]
- Katsuno, K.; Burrows, J.N.; Duncan, K.; van Huijsduijnen, R.H.; Kaneko, T.; Kita, K.; Mowbray, C.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 2015, 14, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Aguado, M.E.; Zoltner, M.; González-Bacerio, J. High-Level Expression in Escherichia coli, Purification and Kinetic Characterization of LAPTc, a Trypanosoma cruzi M17-Aminopeptidase. Protein J. 2019, 38, 167–180. [Google Scholar] [CrossRef]
- Timm, J.; Valente, M.; García-Caballero, D.; Wilson, K.S.; González-Pacanowska, D. Structural Characterization of Acidic M17 Leucine Aminopeptidases from the TriTryps and Evaluation of Their Role in Nutrient Starvation in Trypanosoma brucei. mSphere 2017, 2, e00226-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, C.; Adams, M.; Almeida, R.; Baltz, T.; Barrett, M.; Bastien, P.; Belli, S.; Beverley, S.; Biteau, N.; Blackwell, J.; et al. Genetic nomenclature for Trypanosoma and Leishmania. Mol. Biochem. Parasitol. 1998, 97, 221–224. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K.; Battistuzzi, F.U. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.M.; Procter, J.; Martin, D.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Chemin 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Méndez, Y.; Pérez-Labrada, K.; González-Bacerio, J.; Valdes, G.; de los Chávez, M.; Osuna, J.; Charli, J.-L.; Pascual, I.; Rivera, D.G. Combinatorial Multicomponent Access to Natural-Products-Inspired Peptidomimetics: Discovery of Selective Inhibitors of Microbial Metallo-aminopeptidases. ChemMedChem 2014, 9, 2351–2359. [Google Scholar] [CrossRef]
- Copeland, R.A. Determination of Serum Protein Binding Affinity of Inhibitors from Analysis of Concentration–Response Plots in Biochemical Activity Assays. J. Pharm. Sci. 2000, 89, 1000–1007. [Google Scholar] [CrossRef]
- Bodley, A.L.; McGarry, M.W.; Shapiro, T.A. Drug Cytotoxicity Assay for African Trypanosomes and Leishmania Species. J. Infect. Dis. 1995, 172, 1157–1159. [Google Scholar] [CrossRef] [PubMed]
- Doležel, D.; Jirků, M.A.; Maslov, D.; Lukeš, J. Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int. J. Syst. Evol. Microbiol. 2000, 50, 1943–1951. [Google Scholar] [CrossRef] [Green Version]
- Matsui, M.; Fowler, J.H.; Walling, L.L. Leucine aminopeptidases: Diversity in structure and function. Biol. Chem. 2006, 387, 1535–1544. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, srep42717. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.; Frearson, J.; Wyatt, P. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3, 435–444. [Google Scholar] [CrossRef]
- Ota, K. Review of ubenimex (Bestatin): Clinical research. Biomed. Pharmacother. 1991, 45, 55–60. [Google Scholar] [CrossRef]
- Hu, X.; Xiong, H.; Huang, S.; Mao, T.; Yang, L.; Su, T. Efficacy of Standardised Treatments Combined with Ubenimex in Patients with Malignant Tumors. J. Coll. Physicians Surg. Pak. 2021, 31, 206–209. [Google Scholar] [CrossRef]
- Wakita, A.; Ohtake, S.; Takada, S.; Yagasaki, F.; Komatsu, H.; Miyazaki, Y.; Kubo, K.; Kimura, Y.; Takeshita, A.; Adachi, Y.; et al. Randomized comparison of fixed-schedule versus response-oriented individualized induction therapy and use of ubenimex during and after consolidation therapy for elderly patients with acute myeloid leukemia: The JALSG GML200 Study. Int. J. Hematol. 2012, 96, 84–93. [Google Scholar] [CrossRef]
- Harbut, M.B.; Velmourougane, G.; Dalal, S.; Reiss, G.; Whisstock, J.; Onder, O.; Brisson, D.; McGowan, S.; Klemba, M.; Greenbaum, D.C. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc. Natl. Acad. Sci. USA 2011, 108, E526–E534. [Google Scholar] [CrossRef] [Green Version]
- Mathew, R.; Wunderlich, J.; Thivierge, K.; Cwiklinski, K.; Dumont, C.; Tilley, L.; Rohrbach, P.; Dalton, J.P. Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP). Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Morty, R.E.; Morehead, J. Cloning and Characterization of a Leucyl Aminopeptidase from Three Pathogenic Leishmania Species. J. Biol. Chem. 2002, 277, 26057–26065. [Google Scholar] [CrossRef] [Green Version]
- Nayak, A.; Akpunarlieva, S.; Barrett, M.; Burchmore, R. A defined medium for Leishmania culture allows definition of essential amino acids. Exp. Parasitol. 2018, 185, 39–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchese, L.; Nascimento, J.D.F.; Damasceno, F.S.; Bringaud, F.; Michels, P.A.M.; Silber, A.M. The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Fairlamb, A.; Horn, D. Melarsoprol Resistance in African Trypanosomiasis. Trends Parasitol. 2018, 34, 481–492. [Google Scholar] [CrossRef] [Green Version]
- McGowan, S.; Oellig, C.A.; Birru, W.A.; Caradoc-Davies, T.T.; Stack, C.M.; Lowther, J.; Skinner-Adams, T.; Mucha, A.; Kafarski, P.; Grembecka, J.; et al. Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proc. Natl. Acad. Sci. USA 2010, 107, 2449–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poręba, M.; McGowan, S.; Skinner-Adams, T.S.; Trenholme, K.R.; Gardiner, D.L.; Whisstock, J.C.; To, J.; Salvesen, G.S.; Dalton, J.P.; Drag, M. Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum. PLoS ONE 2012, 7, e31938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Don, R.; Ioset, J.-R. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 2014, 141, 140–146. [Google Scholar] [CrossRef] [Green Version]
N° | TcLAP | hLAP3 | ||||
---|---|---|---|---|---|---|
Residues | Polarity | Type of Interaction | Residues | Polarity | Type of Interaction | |
1 | Lys 299 | polar | wdw | Lys 294 | polar | wdw |
2 | Phe 303 | Hydrophobic | wdw | Asp 364 | polar | wdw |
3 | Asp 369 | polar | wdw | Arg 368 | polar | wdw |
4 | Thr 401 | polar | wdw | Thr 393 | polar | wdw |
5 | Gly 402 | Hydrophobic | wdw | Ala 395 | Hydrophobic | H-bond |
5a | Gly 402 | Hydrophobic | H-bond | |||
6 | Ala 495 | Hydrophobic | wdw | Ile 453 | Hydrophobic | wdw |
7 | Phe 496 | Hydrophobic | wdw | Arg 457 | polar | wdw |
Characteristics | KBE009 | Comments | |
---|---|---|---|
Physicochemical properties | Formula | C28H33N3O5 | |
Molecular weight (MW) | 491.58 | ||
N° Rotatable bonds | 14 | ||
N° H-bond acceptors | 6 | ||
N° H-bond donors | 3 | ||
Molar Refractivity (MR) | 136.10 | ||
TPSA | 125.87 | ||
Lipophilicity | Consensus Log P (average of five different prediction tools) | 2.57 | meet all filters of drug-likeness |
Water solubility | Log S (ESOL/Ali/SILICOS-IT) | −3.25/−3.73/−6.96 | soluble/soluble/poorly soluble |
Pharmacokinetics | GI absorption | high | |
BBB permeant | no | ||
Pgp substrate | yes | ||
inhibitor of CYP1A2/CYP2C19/CYP2C9 | no | ||
inhibitor of CYP2D6/CYP3A4 | yes | ||
Drug-likeness | Lipinski 1 | yes | |
Egan 2 | yes | ||
Muegge 3 | yes | ||
Veber 4 | no | 1 violation: N°. of rotatable bonds > 10 | |
Ghose 5 | no | 2 violations: MW > 480, MR > 130 | |
Medicinal Chemistry | PAINS N° alerts | 0 | |
Brenk N° alerts | 0 | ||
Lead-likeness N° violations | 2 | MW > 350, Rotors > 7 | |
Synthetic accessibility | 4.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Bacerio, J.; Arocha, I.; Aguado, M.E.; Méndez, Y.; Marsiccobetre, S.; Izquierdo, M.; Rivera, D.G.; Figarella, K.; Uzcátegui, N.L. KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity. Life 2021, 11, 1037. https://doi.org/10.3390/life11101037
González-Bacerio J, Arocha I, Aguado ME, Méndez Y, Marsiccobetre S, Izquierdo M, Rivera DG, Figarella K, Uzcátegui NL. KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity. Life. 2021; 11(10):1037. https://doi.org/10.3390/life11101037
Chicago/Turabian StyleGonzález-Bacerio, Jorge, Irina Arocha, Mirtha Elisa Aguado, Yanira Méndez, Sabrina Marsiccobetre, Maikel Izquierdo, Daniel G. Rivera, Katherine Figarella, and Néstor L. Uzcátegui. 2021. "KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity" Life 11, no. 10: 1037. https://doi.org/10.3390/life11101037
APA StyleGonzález-Bacerio, J., Arocha, I., Aguado, M. E., Méndez, Y., Marsiccobetre, S., Izquierdo, M., Rivera, D. G., Figarella, K., & Uzcátegui, N. L. (2021). KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity. Life, 11(10), 1037. https://doi.org/10.3390/life11101037