Reference Values of Forced Vital Capacity and Expiratory Flow in High-Level Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Measures
2.3. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Spirometric Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillien, A.; Soumagne, T.; Regnard, J.; Degano, B.; Groupe Fonction de la SPLF. The new reference equations of the Global Lung function Initiative (GLI) for pulmonary function tests. Rev. Mal. Respir. 2018, 35, 1020–1027. [Google Scholar] [CrossRef]
- Roberts, C.M.; MacRae, K.D.; Winning, A.J.; Adams, L.; Seed, W.A. Reference Values and Prediction Equations for Normal Lung Function in a Non-Smoking White Urban Population. Thorax 1991, 46, 643–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoletti, P.; Pistelli, G.; Fazzi, P.; Viegi, G.; Di Pede, F.; Giuliano, G.; Prediletto, R.; Carrozzi, L.; Polato, R.; Saetta, M. Reference Values for Vital Capacity and Flow-Volume Curves from a General Population Study. Bull. Eur. Physiopathol. Respir. 1986, 22, 451–459. [Google Scholar] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-Ethnic Reference Values for Spirometry for the 3-95-Yr Age Range: The Global Lung Function 2012 Equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative Strategies for Lung Function Tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Parsons, J.P.; Cosmar, D.; Phillips, G.; Kaeding, C.; Best, T.M.; Mastronarde, J.G. Screening for Exercise-Induced Bronchoconstriction in College Athletes. J. Asthma 2012, 49, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Bonini, M.; Palange, P. Exercise-Induced Bronchoconstriction: New Evidence in Pathogenesis, Diagnosis and Treatment. Asthma Res. Pract. 2015, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Boulet, L.-P.; O’Byrne, P.M. Asthma and Exercise-Induced Bronchoconstriction in Athletes. N. Engl. J. Med. 2015, 372, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Fitch, K.D. The Enigma of Inhaled Salbutamol and Sport: Unresolved after 45 Years. Drug Test. Anal. 2017, 9, 977–982. [Google Scholar] [CrossRef]
- Medelli, J.; Lounana, J.; Messan, F.; Menuet, J.J.; Petitjean, M. Testing of Pulmonary Function in a Professional Cycling Team. J. Sports Med. Phys. Fit. 2006, 46, 298–306. [Google Scholar]
- Durmic, T.; Lazovic, B.; Djelic, M.; Lazic, J.S.; Zikic, D.; Zugic, V.; Dekleva, M.; Mazic, S. Sport-Specific Influences on Respiratory Patterns in Elite Athletes. J. Bras. Pneumol. 2015, 41, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Lazovic, B.; Mazic, S.; Suzic-Lazic, J.; Djelic, M.; Djordjevic-Saranovic, S.; Durmic, T.; Zikic, D.; Zugic, V. Respiratory Adaptations in Different Types of Sport. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2269–2274. [Google Scholar]
- Degens, H.; Rittweger, J.; Parviainen, T.; Timonen, K.L.; Suominen, H.; Heinonen, A.; Korhonen, M.T. Diffusion Capacity of the Lung in Young and Old Endurance Athletes. Int. J. Sports Med. 2013, 34, 1051–1057. [Google Scholar] [CrossRef]
- Mazic, S.; Lazovic, B.; Djelic, M.; Suzic-Lazic, J.; Djordjevic-Saranovic, S.; Durmic, T.; Soldatovic, I.; Zikic, D.; Gluvic, Z.; Zugic, V. Respiratory Parameters in Elite Athletes—Does Sport Have an Influence? Rev. Port. Pneumol. 2015, 21, 192–197. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Poels, P.J.P.; Schermer, T.R. Value of Recommended Spirometer Accuracy Checks on Office Spirometers in Primary Care Unknown. Respirology 2007, 12, 152–153. [Google Scholar] [CrossRef]
- Culver, B.H.; Graham, B.L.; Coates, A.L.; Wanger, J.; Berry, C.E.; Clarke, P.K.; Hallstrand, T.S.; Hankinson, J.L.; Kaminsky, D.A.; MacIntyre, N.R.; et al. Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement. Am. J. Respir. Crit. Care Med. 2017, 196, 1463–1472. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Quartiles, Quintiles, Centiles, and Other Quantiles. BMJ 1994, 309, 996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razali, N.M.; Wah, Y.B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Bland, J.M.; Altman, D.G. Correlation, Regression, and Repeated Data. BMJ 1994, 308, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, J.M.; Altman, D.G. Some Examples of Regression towards the Mean. BMJ 1994, 309, 780. [Google Scholar] [CrossRef] [Green Version]
- Salinero, J.J.; Soriano, M.L.; Ruiz-Vicente, D.; Gonzalez-Millan, C.; Areces, F.; Gallo-Salazar, C.; Abian-Vicen, J.; Lara, B.; Del Coso, J. Respiratory Function Is Associated to Marathon Race Time. J. Sports Med. Phys. Fit. 2016, 56, 1433–1438. [Google Scholar]
- Harries, M. ABC of Sports Medicine. Pulmonary Limitations to Performance in Sport. BMJ 1994, 309, 113–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, M.E.; Boutellier, U.; Smith, R.M.; Spengler, C.M. Hyperpnea Training Attenuates Peripheral Chemosensitivity and Improves Cycling Endurance. J. Exp. Biol. 2002, 205, 3937–3943. [Google Scholar] [CrossRef]
- Dempsey, J.A.; McKenzie, D.C.; Haverkamp, H.C.; Eldridge, M.W. Update in the Understanding of Respiratory Limitations to Exercise Performance in Fit, Active Adults. Chest 2008, 134, 613–622. [Google Scholar] [CrossRef] [PubMed]
- John, C.; Soler Artigas, M.; Hui, J.; Nielsen, S.F.; Rafaels, N.; Paré, P.D.; Hansel, N.N.; Shrine, N.; Kilty, I.; Malarstig, A.; et al. Genetic Variants Affecting Cross-Sectional Lung Function in Adults Show Little or No Effect on Longitudinal Lung Function Decline. Thorax 2017, 72, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quanjer, P.H.; Stocks, J.; Cole, T.J.; Hall, G.L.; Stanojevic, S. Global Lungs Initiative Influence of Secular Trends and Sample Size on Reference Equations for Lung Function Tests. Eur. Respir. J. 2011, 37, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Huprikar, N.A.; Skabelund, A.J.; Bedsole, V.G.; Sjulin, T.J.; Karandikar, A.V.; Aden, J.K.; Morris, M.J. Comparison of Forced and Slow Vital Capacity Maneuvers in Defining Airway Obstruction. Respir. Care. 2019, 64, 786–792. [Google Scholar] [CrossRef]
- Cole, T.J.; Stanojevic, S.; Stocks, J.; Coates, A.L.; Hankinson, J.L.; Wade, A.M. Age- and Size-Related Reference Ranges: A Case Study of Spirometry through Childhood and Adulthood. Stat. Med. 2009, 28, 880–898. [Google Scholar] [CrossRef] [Green Version]
Mean ± SD | Minimum | Maximum | |
---|---|---|---|
FEV1 (L/s) Th (%) | 5.14 ± 0.69 116.8 ± 14.9 | 3.75 84.6 | 7.01 159.1 |
FVC (L) Th (%) | 6.11 ± 0.76 116.8 ± 13.1 | 4.21 87.9 | 8.04 163 |
FEV1/FVC (%) | 84.1 ± 5.9 | 69 | 96.4 |
PEF (L/s) Th (%) | 11.68 ± 1.56 119.3 ± 16.9 | 8.12 88 | 15.8 168.7 |
FEF75 (L/s) Th (%) | 9.35 ± 1.78 112 ± 22.4 | 4.80 56 | 14.64 159 |
FEF50 (L/s) Th (%) | 5.95 ± 1.42 107.3 ± 25.8 | 2.93 51.7 | 9.79 175.7 |
FEF25 (L/s) Th (%) | 2.69 ± 0.82 102.4 ± 30.4 | 1.23 46 | 5.67 230 |
MMEF 25–75 (L/s) Th (%) | 5.35 ± 1.34 107.5 ± 26.8 | 2.63 51.6 | 9.68 188 |
Measured Values in Professional Cyclists (n = 145) | Theoretical Values | p | Equations | r | r2 | r2adj | |
---|---|---|---|---|---|---|---|
FEV1 (L/s), mean ± SD Median [5th–95th percentiles] | 5.14 ± 0.69 5.11 [4.09–6.43] | 4.39 ± 0.30 4.40 [3.87–4.92] | <0.001 a <0.001 b | −5.48 + 0.059H | 0.513 | 0.264 | 0.258 |
FVC (L), mean ± SD Median [5th–95th percentiles] | 6.11 ± 0.76 6.12 [4.97–7.50] | 5.24 ± 0.39 6.26 [4.64–5.92] | <0.001 a <0.001 b | −6.9 + 0.063H + 0.025W | 0.666 | 0.443 | 0.435 |
FEV1/FVC (%), mean ± SD Median [5th–95th percentiles] | 84.1 ± 5.94 84.4 [71.7–92.9] | 83.8 ± 1.53 84.0 [82.3–85.2] | 0.51 a 0.30 b | 122 − 0.173H − 0.303A | 0.280 | 0.079 | 0.066 |
PEF (L/s), mean ± SD Median [5th–95th percentiles] | 11.63 ± 1.58 11.60 [9.16–14.20] | 9.82 ± 0.70 9.95 [8.08–10.65] | <0.001 a <0.001 b | 7.08 + 0.065W | 0.284 | 0.081 | 0.074 |
FEF75 (L/s), mean ± SD Median [5th–95th percentiles] | 9.35 ± 1.78 9.35 [6.22–12.27] | 8.38 ± 0.60 8.51 [6.51–9.14] | <0.001 a <0.001 b | 8.88 − 0.01H + 0.047W − 0.047A | 0.175 | 0.031 | 0.010 |
FEF50 (L/s), mean ± SD Median [5th–95th percentiles] | 5.95 ± 1.42 5.80 [3.69–8.71] | 5.56 ± 0.38 5.59 [4.83–6.07] | <0.001 a 0.004 b | 8.53 + 0.017H + 0.023W − 0.053A | 0.218 | 0.248 | 0.027 |
FEF25 (L/s), mean ± SD Median [5th–95th percentiles] | 2.69 ± 0.82 2.48 [1.60–4.33] | 2.63 ± 0.19 2.63 [2.32–2.95] | 0.32 a 0.93 b | −0.624 + 0.025H − 0.05A | 0.347 | 0.121 | 0.108 |
MMEF 25–75 (L/s), mean ± SD Median [5th–95th percentiles] | 5.35 ± 1.34 5.31 [3.25–7.30] | 4.98 ± 0.27 5.03 [4.38–5.30] | <0.001 a 0.006 b | 6.73 − 0.058A | 0.201 | 0.04 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dauty, M.; Georges, T.; Le Blanc, C.; Louguet, B.; Menu, P.; Fouasson-Chailloux, A. Reference Values of Forced Vital Capacity and Expiratory Flow in High-Level Cyclists. Life 2021, 11, 1293. https://doi.org/10.3390/life11121293
Dauty M, Georges T, Le Blanc C, Louguet B, Menu P, Fouasson-Chailloux A. Reference Values of Forced Vital Capacity and Expiratory Flow in High-Level Cyclists. Life. 2021; 11(12):1293. https://doi.org/10.3390/life11121293
Chicago/Turabian StyleDauty, Marc, Thomas Georges, Camille Le Blanc, Bastien Louguet, Pierre Menu, and Alban Fouasson-Chailloux. 2021. "Reference Values of Forced Vital Capacity and Expiratory Flow in High-Level Cyclists" Life 11, no. 12: 1293. https://doi.org/10.3390/life11121293
APA StyleDauty, M., Georges, T., Le Blanc, C., Louguet, B., Menu, P., & Fouasson-Chailloux, A. (2021). Reference Values of Forced Vital Capacity and Expiratory Flow in High-Level Cyclists. Life, 11(12), 1293. https://doi.org/10.3390/life11121293