Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Chemicals
2.2. sgRNA Design and Vector Construction
2.3. Cell Culture, Transfection, and Selection
2.4. SCNT and Embryo Transfer
2.5. BE3 Efficiency Test
2.6. RNA Isolation and Quantitative PCR (qPCR)
2.7. Protein extraction and Immunoblotting
2.8. Immunohistochemical Analysis of Tissue Sections
2.9. Fluorescence Microscopy
2.10. Off-target Assay
2.11. Statistical Analysis
3. Results
3.1. Effective Mediation by the BE3 System of C-to-T Base Conversion in PFFs
3.2. Efficient Generation of P53 Mutant PFFs via the BE3 System
3.3. Generation of P53 Mutant Piglets by SCNT
3.4. Functional Inactivation of the Porcine P53 Gene Mutation
3.5. Off-Target Validation in Mutant Animals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without dou-ble-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Zong, Y.; Song, Q.; Li, C.; Jin, S.; Zhang, D.; Wang, Y.; Qiu, J.-L.; Gao, C. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 2018, 36, 950–953. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, W.; Lu, X.; Xu, J.; Huang, H.; Bai, H.; Li, S.; Lin, S. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat. Commun. 2017, 8, 1–5. [Google Scholar] [CrossRef]
- Kim, K.; Ryu, S.-M.; Kim, S.-T.; Baek, G.; Kim, D.; Lim, K.; Chung, E.; Kim, S.; Kim, J.-S. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 2017, 35, 435–437. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, J.; Li, G.; Huang, S.; Yu, W.; Zhang, Y.; Chen, D.; Chen, J.; Liu, J.; Huang, X. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editingin human cells and heterozygous embryos. Mol. Ther. 2018, 26, 2631–2637. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, M.; Chen, S.; Deng, J.; Song, Y.; Lai, L.; Li, Z. Highly efficient RNA-guided base editing in rabbit. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Duan, X.; An, X.; Feng, T.; Li, P.; Li, L.; Liu, J.; Wu, P.; Pan, D.; Du, X.; et al. Efficient RNA-guided base editing fordisease modeling in pigs. Cell Discov. 2018, 4, 64. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, T.; Wang, L.; Yang, L.; Zhang, Y.; Liu, H.; Li, M.; Tang, X.; Liu, Z.; Li, Z.; et al. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cell Mol. Life Sci. 2020, 77, 719–733. [Google Scholar] [CrossRef]
- Li, G.W.; Zhou, S.W.; Li, C.; Cai, B.; Yu, H.H.; Ma, B.H.; Huang, Y.; Ding, Y.G.; Liu, Y.; Ding, Q.; et al. Base pair editing in goat: Nonsense codon intro-gression into FGF5 results in longer hair. FEBS J. 2019, 286, 4675–4692. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Xu, C.L.; Cui, X.; Bassuk, A.G.; Mahajan, V.B.; Tsai, Y.-T.; Tsang, S.H. CRISPR Base Editing in Induced Pluripotent Stem Cells. Stem Cells Aging 2019, 2045, 337–346. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016, 44, D862–D868. [Google Scholar] [CrossRef] [Green Version]
- Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer 2009, 9, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, M.J.; Synnott, N.C.; Crown, J. Mutant p53 as a target for cancer treatment. Eur. J. Cancer 2017, 83, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.; McGarry, M.P.; Lee, N.A.; Lee, J.J. The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res. 2011, 21, 327–349. [Google Scholar] [CrossRef] [Green Version]
- Su, J.J.; Ban, K.C.; Li, Y.; Qin, L.L.; Wang, H.Y.; Yang, C.; Ou, C.; Duan, X.X.; Lee, Y.L.; Yang, R.Q. Alteration of p53 and p21 during hepatocar-cinogenesis in tree shrews. World J. Gastroenterol. 2004, 10, 3559–3563. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Hao, J.; Tu, Q.; Yu, H.; Yan, L.; Li, Y.; Lv, L.; Wang, F.; Iavarone, A.; Zhao, X. A tree shrew glioblastoma model recapitulates fea-tures of human glioblastoma. Oncotarget 2017, 8, 17897–17907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eun, K.; Park, M.G.; Jeong, Y.W.; Jeong, Y.I.; Hyun, S.H.; Hwang, W.S.; Kim, S.H.; Kim, H. Establishment of TP53-knockout canine cells us-ing optimized CRISPR/Cas9 vector system for canine cancer research. BMC Biotechnol. 2019, 19, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheon, D.J.; Orsulic, S. Mouse models of cancer. Annu. Rev. Pathol. 2011, 6, 95–119. [Google Scholar] [CrossRef]
- Adam, S.J.; Rund, L.; Kuzmuk, K.N.; Zachary, J.F.; Schook, L.; Counter, C.M. Genetic induction of tumorigenesis in Swine. Oncogene 2006, 26, 1038–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, J.J.; Prather, R.S. Genetic modifications of pigs for medicine and agriculture. Mol. Reprod. Dev. 2011, 78, 879–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flisikowska, T.; Kind, A.; Schnieke, A. The new pig on the block: Modelling cancer in pigs. Transgenic Res. 2013, 22, 673–680. [Google Scholar] [CrossRef]
- Leuchs, S.; Saalfrank, A.; Merkl, C.; Flisikowska, T.; Edlinger, M.; Durkovic, M.; Rezaei, N.; Kurome, M.; Zakhartchenko, V.; Kessler, B.; et al. Inactivation and Inducible Oncogenic Mutation of p53 in Gene Targeted Pigs. PLoS ONE 2012, 7, e43323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saalfrank, A.; Janssen, K.-P.; Ravon, M.; Flisikowski, K.; Eser, S.; Steiger, K.; Flisikowska, T.; Müller-Fliedner, P.; Schulze, E.; Brönner, C.; et al. A porcine model of osteosarcoma. Oncogenesis 2016, 5, e210. [Google Scholar] [CrossRef]
- Sieren, J.C.; Meyerholz, D.K.; Wang, X.J.; Davis, B.T.; Newell, J.D., Jr.; Hammond, E.; Rohret, J.A.; Rohret, F.A.; Struzynski, J.T.; Goeken, J.A.; et al. Development and transla-tional imaging of a TP53 porcine tumorigenesis model. J. Clin. Investig. 2014, 124, 4052–4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schook, L.B.; Collares, T.; Hu, W.; Liang, Y.; Rodrigues, F.M.; Rund, L.; Schachtschneider, K.; Seixas, F.K.; Singh, K.; Wells, K.D.; et al. A Genetic Porcine Model of Cancer. PLoS ONE 2015, 10, e0128864. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, K.; Yuan, Z.; Guo, J.; Zhao, H.; Zhang, X.; Zhao, L.; Qing, Y.; Li, H.; Pan, W.; et al. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer. J. Transl. Med. 2017, 15, 224. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.P.; Ideker, T. Correcting CRISPR for copy number. Nat. Genet. 2017, 49, 1674–1675. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Qing, Y.; Pan, W.; Zhao, H.; Li, H.; Cheng, W.; Zhao, L.; Xu, C.; Li, H.; Li, S.; et al. Compari-son of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS ONE 2013, 8, e57728. [Google Scholar]
- Zhu, C.; Li, B.; Yu, G.; Chen, J.; Yu, H.; Chen, J.; Xu, X.; Wu, Y.; Zhang, A.; Cheng, G. Production of Prnp-/-goats by gene targeting in adult fibroblasts. Transgenic Res. 2009, 18, 163–171. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Hao, Z.; Zhang, G.; Qing, Y.; Liu, S.; Qing, L.; Pan, W.; Chen, L.; Liu, G.; et al. Generation of biallelicknock-out sheep via gene-editing and somatic cell nuclear transfer. Sci. Rep. 2016, 6, 33675. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Long, W.; Zhang, X.; Xu, K.; Guo, J.; Zhao, H.; Li, H.; Qing, Y.; Pan, W.; Jia, B.; et al. Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer. J. Transl. Med. 2018, 16, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Park, J.; Kim, J.S. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014, 30, 1473–1475. [Google Scholar] [CrossRef] [Green Version]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harb. Perspect. Biol. 2009, 2, a001008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hergenhahn, M.; Luo, J.-L.; Hollstein, M. p53 Designer Genes for the Modern Mouse. Cell Cycle 2004, 3, 736–739. [Google Scholar] [CrossRef] [Green Version]
- Ritman, E.L. Current Status of Developments and Applications of Micro-CT. Annu. Rev. Biomed. Eng. 2011, 13, 531–552. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, W.; Yang, Q.; Jiang, H.; Huang, L.; Xing, Y. P53 gene editing in PFF and expression analyses of vital genes in its signal-ing pathway. Acta Vet. Zootech. Sin. 2019, 50, 2215–2225. [Google Scholar]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef]
- Grünewald, I.; Vollbrecht, C.; Meinrath, J.; Meyer, M.F.; Heukamp, L.C.; Drebber, U.; Quaas, A.; Beutner, D.; Hüttenbrink, K.B.; Wardelmann, E.; et al. Targeted next generation sequencing of parotid gland cancer uncovers ge-netic heterogeneity. Oncotarget 2015, 6, 18224–18237. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.-J.; Chen, M.; Ma, G.-C.; Chen, S.-T.; Chang, S.-P.; Lin, W.-Y.; Chen, Y.-C.; Lee, T.-H.; Lin, T.-T.; Liu, C.-S. Number of somatic mutations in the mitochondrial D-loop region indicates poor prognosis in breast cancer, independent of TP53 mutation. Cancer Genet. Cytogenet. 2010, 201, 94–101. [Google Scholar] [CrossRef]
- Fésüs, V.; Marosvári, D.; Kajtár, B.; Király, P.A.; Demeter, J.; GurbityPálfi, T.; Egyed, M.; Plander, M.; Farkas, P.; Mátrai, Z.; et al. TP53 mutation analysis in chronic lymphocytic leukaemia. Orv. Hetil. 2017, 158, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svobodova, K.; Lhotska, H.; Hodanova, L.; Pavlistova, L.; Vesela, D.; Belickova, M.; Vesela, J.; Brezinova, J.; Sarova, I.; Izakova, S.; et al. Cryptic aberrations may allow more accurate prognostic classifi-cation of patients with myelodysplastic syndromes and clonal evolution. Gene Chromosome Cancer 2020, 59, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Sun, H.; Sun, Y.; Zhang, X.; Xie, X.; Zhang, J.; Zhang, Z.; Chen, Y.; Ding, C.; Xiong, Y.; et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein Cell 2017, 8, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.A.; Vousden, K.H. Mutant p53 in Cancer: New Functions and Therapeutic Opportunities. Cancer Cell 2014, 25, 304–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer Name | Sequences (5’→3’) |
---|---|
F1 | GGGAAGCACAGACCTATACTGACTC |
R1 | ATGGAGAGCGAACAGAAGGTCAGAG |
F2 | GACCCTGGTCCCAAAGTTGAATAC |
R2 | GCAGGTCAAGTGAGAAGGAGAAAG |
U6-F | CTCGACGGTATCGATCACGAGAC |
P53-sgRNA-Exon4-F | ACCGCCTTCTCAGAAGACCTACCC |
P53-sgRNA-Exon4-R | AAACGGGTAGGTCTTCTGAGAAGG |
P53-sgRNA-Exon5-F | ACCGGACCCACAGCTGCACCGGGC |
P53-sgRNA-Exon5-R | AAACGCCCGGTGCAGCTGTGGGTC |
qP53-F | CACTGGATGGCGAGTATTTCAC |
qP53-R | CGCAGTCTGGGCATCCTTC |
qGAPDH-F | ATCAAGAAGGTGGTGAAGCAC |
qGAPDH-R | CAGCATCAAAAGTGGAAGAGTG |
sgRNA | No. of Sequencing | Mutant Efficiency (%) | ||||
---|---|---|---|---|---|---|
No. of Mutants | No. of Target Mutant | No. of Nontarget Mutant | No. of Indel | No. of non-C>T | ||
P53-sgRNA-Exon5 | 84 | 53(63.1) | 52(61.9) | 1(1.2) | 1(1.2) | 1(1.2) |
P53-sgRNA-Exon4 | 86 | 53(61.6) | 43(50.0) | 10(11.6) | 1(1.2) | 4(4.7) |
Total | 170 | 106(62.4) | 94(55.3) | 11(6.5) | 2(1.2) | 5(2.9) |
Target | No. of Colonies | Monoallelic-Mutation (%) | Biallelic-Mutation (%) |
---|---|---|---|
P53-sgRNA-Exon5 | 28 | 7(25) | 14(50) |
P53-sgRNA-Exon4 | 32 | 9(28.1) | 13(40.6) |
Donor Cells | No. of Reconstructed Embryos | Cleavage Rate (%) | Blastocyst Rate (%) |
---|---|---|---|
P53-sgRNA-Exon5-5 | 71 | 64(90.1) | 29(40.8) |
P53-sgRNA-Exon4-7 | 58 | 47(81.0) | 22 (37.9) |
Donor Cells | Recipients | Transferred Embryos | Days of Pregnancy (d) | Pregnancy Rate (%) | Offspring (Stillborn/Aborted) | Mutant Piglets |
---|---|---|---|---|---|---|
P53-sgRNA-Exon5-5 | 1 | 325 | - | 0 | - | - |
2 | 325 | - | - | - | ||
3 | 340 | - | - | - | ||
4 | 340 | - | - | - | ||
5 | 400 | - | - | - | ||
6 | 400 | - | - | - | ||
Total | 6 | 2130 | 0 | 0 | ||
P53-sgRNA-Exon4-7 | 1 | 355 | - | 50.0 | - | |
2 | 307 | - | - | |||
3 | 300 | 117 | 3 | 3 | ||
4 | 330 | 117 | 7 (1 dead) | 7 | ||
5 | 290 | 119 | 7 (2 dead) | 7 | ||
6 | 310 | - | - | |||
Total | 6 | 1892 | 14 (3 dead) | 17 |
Piglet ID | Birth Weight (kg) | Survival Time |
---|---|---|
P1# | 1.07 | 68 d |
P2# | 0.93 | 84 d |
P3# | 1.1 | 31 d |
P4# | 0.74 | 19 d |
P5# | 0.67 | Stillborn |
P6# | 0.98 | 396 d |
P7# | 0.52 | 23 d |
P8# | 0.53 | 32 d |
P9# | 0.89 | 79 d |
P10# | 1.02 | 25 d |
P11# | 0.51 | Stillborn |
P12# | 1.1 | 82 d |
P13# | 0.87 | 31 d |
P14# | 0.58 | 13 d |
P15# | 1.0 | 82 d |
P16# | 0.81 | 27 d |
P17# | 0.35 | Stillborn |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Cheng, W.; Chen, B.; Pu, S.; Fan, N.; Zhang, X.; Jiao, D.; Shi, D.; Guo, J.; Li, Z.; et al. Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life 2021, 11, 1417. https://doi.org/10.3390/life11121417
Li H, Cheng W, Chen B, Pu S, Fan N, Zhang X, Jiao D, Shi D, Guo J, Li Z, et al. Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life. 2021; 11(12):1417. https://doi.org/10.3390/life11121417
Chicago/Turabian StyleLi, Honghui, Wenmin Cheng, Bowei Chen, Shaoxia Pu, Ninglin Fan, Xiaolin Zhang, Deling Jiao, Dejia Shi, Jianxiong Guo, Zhuo Li, and et al. 2021. "Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing" Life 11, no. 12: 1417. https://doi.org/10.3390/life11121417
APA StyleLi, H., Cheng, W., Chen, B., Pu, S., Fan, N., Zhang, X., Jiao, D., Shi, D., Guo, J., Li, Z., Qing, Y., Jia, B., Zhao, H. -Y., & Wei, H. -J. (2021). Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life, 11(12), 1417. https://doi.org/10.3390/life11121417