The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- T.R.C. Group. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19-Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Rawat, K.; Kumari, P.; Saha, L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur. J. Pharmacol. 2021, 892, 173751. [Google Scholar] [CrossRef]
- Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D.R.; Bailey, M.J.; Mansour, M.; McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020, 370, 1227–1230. [Google Scholar] [CrossRef]
- Focosi, D.; Anderson, A.O.; Tang, J.W.; Tuccori, M. Convalescent Plasma Therapy for COVID-19: State of the Art. Clin. Microbiol. Rev. 2020, 33, e00072-00020. [Google Scholar] [CrossRef] [PubMed]
- Klassen, S.A.; Senefeld, J.W.; Johnson, P.W.; Carter, R.E.; Wiggins, C.C.; Shoham, S.; Grossman, B.J.; Henderson, J.P.; Musser, J.; Salazar, E.; et al. Evidence favoring the efficacy of convalescent plasma for COVID-19 therapy. Medrxiv Prepr. Serv. Health Sci. 2020. [Google Scholar] [CrossRef]
- Focosi, D.; Farrugia, A. The art of the possible in approaching efficacy trials for COVID19 convalescent plasma. Int. J. Infect. Dis. Ijid Off. Publ. Int. Soc. Infect. Dis. 2021, 102, 244–246. [Google Scholar]
- Tuccori, M.; Ferraro, S.; Convertino, I.; Cappello, E.; Valdiserra, G.; Blandizzi, C.; Maggi, F.; Focosi, D. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: Clinical pipeline. mAbs 2020, 12, 1854149. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Tuccori, M.; Antonelli, G.; Maggi, F. What is the optimal usage of Covid-19 convalescent plasma donations? Clin. Microb. Infect 2020, S1198–743X, 30589-30589. [Google Scholar] [CrossRef]
- Díez, J.-M.; Romero, C.; Gajardo, R. Currently available intravenous immunoglobulin contains antibodies reacting against SARS-CoV-2 antigens. Immunotherapy 2020, 12, 571–576. [Google Scholar]
- Cao, W.; Liu, X.; Bai, T.; Fan, H.; Hong, K.; Song, H.; Han, Y.; Lin, L.; Ruan, L.; Li, T. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect. Dis. 2020, 7, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, I.F.N.; To, K.K.W.; Lee, C.K.; Lee, K.L.; Yan, W.W.; Chan, K.; Chan, W.M.; Ngai, C.W.; Law, K.I.; Chow, F.L.; et al. Hyperimmune IV immunoglobulin treatment: A multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013, 144, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Cox, J.; Herzig, R.; Palaniyandi, S.; Hildebrandt, G.C.; Munker, R. Anti-thymocyte globulin in haematology: Recent developments. Indian J. Med Res. 2019, 150, 221–227. [Google Scholar] [PubMed]
- Pereira, E.P.V.; van Tilburg, M.F.; Florean, E.O.P.T.; Guedes, M.I.F. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int Immunopharmacol. 2019, 73, 293–303. [Google Scholar] [CrossRef]
- de la Lastra, J.M.P.; Baca-González, V.; Asensio-Calavia, P.; González-Acosta, S.; Morales-delaNuez, A. Can Immunization of Hens Provide Oral-Based Therapeutics against COVID-19? Vaccines 2020, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- Radosevich, M.; Burnouf, T. Intravenous immunoglobulin G: Trends in production methods, quality control and quality assurance Vox Sang. 2010, 98, 12–28. Vox Sang. 2010, 98, 12–28. [Google Scholar] [CrossRef]
- WHO. Annex 4. Recommendations for the collection, quality control and regulation of human plasma for fractionation. WHO Tech. Rep. Ser. 2007, 941, 189–264. [Google Scholar]
- El-Ekiaby, M.; Vargas, M.; Sayed, M.; Gorgy, G.; Goubran, H.; Radosevic, M.; Burnouf, T. Minipool caprylic acid fractionation of plasma using disposable equipment: A practical method to enhance immunoglobulin supply in developing countries. PLoS Negl. Trop. Dis. 2015, 9, e0003501. [Google Scholar] [CrossRef]
- Li, G.; Stewart, R.; Conlan, B.; Gilbert, A.; Roeth, P.; Nair, H. Purification of human immunoglobulin G: A new approach to plasma fractionation. Vox Sang. 2002, 83, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Song, G.W.; Chung, Y.K.; Ahn, C.S.; Kim, K.H.; Moon, D.B.; Ha, T.Y.; Jung, D.H.; Park, G.C.; Yoon, Y.I.; et al. Determination of Hepatitis B Immunoglobulin Infusion Interval Using Pharmacokinetic Half-life Simulation for Posttransplant Hepatitis B Prophylaxis. J. Korean Med. Sci. 2019, 34, e251. [Google Scholar] [CrossRef] [PubMed]
- Bock, H.L.; Milcke-Ungeheuer, L. Active and passive rabies immunization: The effect of administering hyperimmune globulin before the vaccine. J. Biol. Stand. 1988, 16, 67–69. [Google Scholar] [CrossRef]
- Sanders, S.L.; Agwan, S.; Hassan, M.; van Driel, M.L.; del Mar, C.B. Immunoglobulin treatment for hospitalised infants and young children with respiratory syncytial virus infection. Cochrane Database Syst. Rev. 2019, 8, Cd009417. [Google Scholar] [CrossRef]
- Wasserman, R.L.; Greener, B.N.; Mond, J. RI-002, an intravenous immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory viruses for use in primary immunodeficiency disease and other immune compromised populations. Expert Rev. Clin. Immunol. 2017, 13, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Suthar, M.S.; Zimmerman, M.; Kauffman, R.; Mantus, G.; Linderman, S.; Vanderheiden, A.; Nyhoff, L.; Davis, C.; Adekunle, S.; Affer, M.; et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep. Med. 2020, 1, 100040. [Google Scholar] [CrossRef] [PubMed]
- Audet, S.; Virata-Theimer, M.L.; Beeler, J.A.; Scott, D.E.; Frazier, D.J.; Mikolajczyk, M.G.; Eller, N.; Chen, F.M.; Yu, M.Y. Measles-virus-neutralizing antibodies in intravenous immunoglobulins. J. Infect Dis. 2006, 194, 781–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabenau, H.F.; Biesert, L.; Schmidt, T.; Bauer, G.; Cinatl, J.; Doerr, H.W. SARS-coronavirus (SARS-CoV) and the safety of a solvent/detergent (S/D) treated immunoglobulin preparation. Biologicals 2005, 33, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Korneyeva, M.; Hotta, J.; Lebing, W.; Rosenthal, R.S.; Franks, L.; Petteway, S.R. Enveloped Virus Inactivation by Caprylate: A Robust Alternative to Solvent-Detergent Treatment in Plasma Derived Intermediates. Biologicals 2002, 30, 153–162. [Google Scholar] [CrossRef]
- Dichtelmüller, H.; Rudnick, D.; Kloft, M. Inactivation of Lipid Enveloped Viruses by Octanoic Acid Treatment of Immunoglobulin Solution. Biologicals 2002, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Vandeberg, P.; Cruz, M.; Diez, J.M.; Merritt, W.K.; Santos, B.; Trukawinski, S.; Wellhouse, A.; José, M.; Willis, T. Production of anti-SARS-CoV-2 hyperimmune globulin from convalescent plasma. biorXiv 2020. [Google Scholar] [CrossRef]
- ContractPharma. Kamada Signs Supply Agreement with Israeli Health Authorities. 2020. Available online: https://www.contractpharma.com/contents/view_breaking-news/2020-10-22/kamada-signs-supply-agreement-with-israeli-health-authorities/ (accessed on 5 November 2020).
- Pan, X.; Zhou, P.; Fan, T.; Wu, Y.; Zhang, J.; Shi, X.; Shang, W.; Fang, L.; Jiang, X.; Shi, J.; et al. Immunoglobulin fragment F(ab’)2 against RBD potently neutralizes SARS-CoV-2 in vitro. Antivriral Res. 2020, 182, 104868. [Google Scholar] [CrossRef]
- Cunha, L.E.R.; Stolet, A.A.; Strauch, M.A.; Pereira, V.A.R.; Dumard, C.H.; Gomes, A.M.O.; Souza, P.N.C.; Fonseca, J.G.; Pontes, F.E.; Meirelles, L.G.R.; et al. Potent neutralizing equine antibodies raised against recombinant SARS-CoV-2 spike protein for COVID-19 passive immunization therapy. medrXiv 2020. [Google Scholar] [CrossRef]
- Vanhove, B.; Duvaux, O.; Rousse, J.; Royer, P.-J.; Evanno, G.; Ciron, C.; Lheriteau, E.; Vacher, L.; Gervois, N.; Oger, R.; et al. High neutralizing potency of swine glyco-humanized polyclonal antibodies against SARS-CoV-2. medrXiv 2020. [Google Scholar] [CrossRef]
- Bjøro, K.; Frøland, S.S.; Yun, Z.; Samdal, H.H.; Haaland, T. Hepatitis C infection in patients with primary hypogammaglobulinemia after treatment with contaminated immune globulin. N. Engl. J. Med. 1994, 331, 1607–1611. [Google Scholar] [CrossRef] [PubMed]
- Etscheid, M.; Breitner-Ruddock, S.; Gross, S.; Hunfeld, A.; Seitz, R.; Dodt, J. Identification of kallikrein and FXIa as impurities in therapeutic immunoglobulins: Implications for the safety and control of intravenous blood products. Vox Sang. 2012, 102, 40–46. [Google Scholar] [CrossRef]
- Lejtenyi, D.; Mazer, B. Consistency of protective antibody levels across lots of intravenous immunoglobulin preparations. J. Allergy Clin. Immunol. 2008, 121, 254–255. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.M.; Mizrahi, R.A.; Adams, M.S.; Asensio, M.A.; Benzie, E.; Carter, K.P.; Chiang, Y.; Edgar, R.C.; Gautam, B.K.; Gras, A.; et al. Capturing and Recreating Diverse Antibody Repertoires as Multivalent Recombinant Polyclonal Antibody Drugs. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ali, S.; Luxmi, S.; Anjum, F.; Muhaymin, S.M.; Uddin, S.M.; Ali, A.; Ali, M.R.; Tauheed, S.; Khan, M.; Bajwa, M.; et al. Hyperimmune anti-COVID-19 IVIG (C-IVIG) Therapy for Passive Immunization of Severe and Critically Ill COVID-19 Patients: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 905. [Google Scholar] [CrossRef]
- León, G.; Herrera, M.; Vargas, M.; Arguedas, M.; Sánchez, A.; Segura, Á.; Gómez, A.; Solano, G.; Corrales-Aguilar, E.; Risner, K.; et al. Development and pre-clinical characterization of two therapeutic equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. medrXiv 2020. [Google Scholar] [CrossRef]
- Zylberman, V.; Sanguineti, S.; Pontoriero, A.V.; Higa, S.V.; Cerutti, M.L.; Seijo, S.M.M.; Pardo, R.; Muñoz, L.; Intrieri, M.E.A.; Alzogaray, V.A.; et al. Development of a hyperimmune equine serum therapy for COVID-19 in Argentina. Medicina 2020, 80 (Suppl. 3), 1–6. [Google Scholar]
Source | Recovery Method | Phase | NCT Identifier | Country | n | Start Date | Estimated Completion Date | Immunogen | Formulation (Brand Name) | Dosage | Indications |
---|---|---|---|---|---|---|---|---|---|---|---|
Convalescent humans | Immunoadsorption | I (vs. nonconvalescent IVIg) | NCT04264858 | China | 10 | Mar 2020 | May 2020 | Whole virus | Full-length IgG | 0.2 g/kg/day for 3 days | Treatment of severe COVID-19 |
Double filtration plasmapheresis (DFPP) | I | NCT04418531 | Italy | 10 | Jun 2020 | Sep 2020 | Whole virus | Full-length IgG | n.a. | Treatment of moderate COVID-19 | |
Plasma fractionation | III | NCT04546581 | USA | 500 | Oct 2020 | Jul 2021 | Whole virus | Full-length IgG (H-Ig; CoVIg-19 Plasma Alliance) | n.a., single infusion | Treatment of moderate COVID-19 [20] | |
I | NCT04548557 | Pakistan | 60 | Sep 2020 | Nov 2020 | Whole virus | Full-length IgG | 4 dose-finding arms of 0.15 to 0.3 g/kg | Treatment of severe and critically ill COVID-19 | ||
II | NCT04383548 | Egypt | 100 | Jun 2020 | Jan 2021 | Whole virus | Full-length IgG | Prophylaxis in younger than 20 years | Post-exposure prevention (group A) and treatment of moderate COVID-19 (group B) | ||
I/II (vs. BSC) | NCT04521309 | Pakistan | 50 | Jun 2020 | Mar 2021 | Whole virus | Full-length IgG | 4 dose-finding arms of 0.2 to 0.35 g/kg | Treatment of severe and critically ill [21] | ||
II (vs. BSC) | NCT04555148 | South Korea | 60 | Sep 20 | Aug 2021 | Whole virus | Full-length IgG (GC5131) | 3 dose-finding arms | Treatment of moderate COVID-19 | ||
I/II | NCT04550325 | Israel | 12 | Aug 2020 | Nov 2020 | Whole virus | Full-length IgG | 4 g | Treatment of mild COVID-19 [22] | ||
III (vs. CCP) | NCT04381858 | Mexico | 500 | May 2020 | Nov 2020 | Whole virus | Full-length IgG | 0.3 gr/kg/day (5 doses) vs. CCP > 1:640 | Treatment of severe COVID-19 | ||
NCT04395170 | Colombia | 75 | Sep 2020 | Jun 2021 | Whole virus | Full-length IgG (Life Factor Zona Franca S.a.s.) | 0.1 g/kg (max 50 g) on days 1 and 3 | Treatment of moderate COVID-19 | |||
Bovine | Ib (vs. placebo) | NCT04469179 | USA | 21 | Sep 2020 | Dec 2020 | Anti-wild-type and recombinant S from insect cells | Full-length IgG (SAB-185) | 3 dose-finding arms of 10 to 50 mg/kg | Treatment of COVID-19 outpatients | |
Equine | I/II | NCT04573855 | Brazil | 41 | Dec 2020 | Mar 2021 | n.a. | F(ab’)2 | n.a. | Treatment of moderate COVID-19 [23] | |
II | NCT04610502 | Costa Rica | 26 | Sep 2020 | Dec 2020 | Anti-Santi-S1,N,S1+E+M | Full-length IgG | 1 10 mL vial on day 1 | Treatment of moderate and severe COVID-19 [24] | ||
II/III | NCT04494984 | Argentina | 242 | Jul 2020 | Dec 2020 | RBD | F(ab’)2 (INM05; Inmunova s.a.) | 4 mg/kg on days 1 and 3; mean PRNT 1:10,240. | Treatment of early, moderate to severe COVID-19 [25] | ||
I/II (vs. placebo) | NCT04514302 | Mexico | 51 | Oct 2020 | Jun 2021 | n.a. | F(ab’)2 (INOSARS) | 2 dose-finding arms (2 vials and 6 vials) | Treatment of moderate COVID-19 | ||
Hen | I (vs. placebo) | NCT04567810 | Australia | 48 | Sep 2020 | Dec 2020 | n.a. | IgY | 6 dose-finding arms (2 to 24 mg total dose) | Healthy subjects [15] |
CCP | Hyperimmune Serum (Polyclonal IgG) | Monoclonal Antibodies | |
---|---|---|---|
Speed of access | Weeks (as soon as convalescents appear) | >1 year | >1 year |
Safety issues | Safe (pathogen inactivation, possible plasma protein allergies) | Safe (solvent/detergent, but ABO-incompatible) | Extremely safe (recombinant technology) |
Potency | Very high (high PRNT titer; includes neutralizing IgA and IgM, and factors other than antibodies) | High (no IgA; less IgG3) | High (nanomolar IC50) Very high for Ab cocktails |
Cost | € | €€ | €€€€ |
Logistics | +2–+8°C (if fresh) or <−25°C (if frozen); i.v. | +2–+8°C; s.c./i.v. | +2–+8°C; s.c./i.v. |
Scalability | Not easily scalable | Easily scalable | Very easily scalable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Focosi, D.; Tuccori, M.; Franchini, M. The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19. Life 2021, 11, 144. https://doi.org/10.3390/life11020144
Focosi D, Tuccori M, Franchini M. The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19. Life. 2021; 11(2):144. https://doi.org/10.3390/life11020144
Chicago/Turabian StyleFocosi, Daniele, Marco Tuccori, and Massimo Franchini. 2021. "The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19" Life 11, no. 2: 144. https://doi.org/10.3390/life11020144
APA StyleFocosi, D., Tuccori, M., & Franchini, M. (2021). The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19. Life, 11(2), 144. https://doi.org/10.3390/life11020144