Radiomics Analysis for 177Lu-DOTAGA-(l-y)fk(Sub-KuE) Targeted Radioligand Therapy Dosimetry in Metastatic Prostate Cancer—A Model Based on Clinical Example
Abstract
:1. Introduction
2. Results
2.1. Clinical Response
2.2. Biochemical and Molecular Response
2.3. Dosimetric Results
3. Discussion
The Limitations of the Study
4. Materials and Methods
4.1. The Patient and 18F-PSMA-1007 PET/CT
4.2. Manufacturing, Administration and Side Effects of Lu-PSMA
4.3. Equipment and Study Protocols
4.4. Image Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
CT | computed tomography |
DRT | Dosimetry Research Tool |
ECOG | Eastern Cooperative Oncology Group Performance Status |
ETCH | East Tallinn Central Hospital |
LDH | lactate dehydrogenase |
mCRPC | metastatic castration resistant prostate cancer |
MIP | maximum intensity projection |
MTV | metabolic tumor volume |
N/A | not applicable |
PET/CT | positron emission tomography/computed tomography |
PR | partial response |
PSA | prostate specific antigen |
PSMA | prostate specific membrane antigen |
PSMA I&T | DOTAGA-(l-y)fk(Sub-KuE) |
RLT | radioligand therapy |
SPECT | single photon emission computed tomography |
SPECT/CT | single photon emission computed tomography/computed tomography |
SUV | standardized uptake value |
SUVmax | maximum standardized uptake value |
TAC | time-activity curve |
VOI | volume of interest |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Tan, N.; Bavadian, N.; Calais, J.; Oyoyo, U.; Kim, J.; Turkbey, I.B.; Mena, E.; Davenport, M.S. Imaging of Prostate Specific Membrane Antigen Targeted Radiotracers for the Detection of Prostate Cancer Biochemical Recurrence after Definitive Therapy: A Systematic Review and Meta-Analysis. J. Urol. 2019, 202, 231–240. [Google Scholar] [CrossRef]
- von Eyben, F.E.; Roviello, G.; Kiljunen, T.; Uprimny, C.; Virgolini, I.; Kairemo, K.; Joensuu, T. Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: A systematic review. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997, 3, 81–85. [Google Scholar] [PubMed]
- Bostwick, D.G.; Pacelli, A.; Blute, M.; Roche, P.; Murphy, G.P. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: A study of 184 cases. Cancer 1998, 82, 2256–2261. [Google Scholar] [CrossRef]
- Kratochwil, C.; Fendler, W.P.; Eiber, M.; Baum, R.; Bozkurt, M.F.; Czernin, J.; Delgado Bolton, R.C.; Ezziddin, S.; Forrer, F.; Hicks, R.J.; et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, K.; Bodei, L.; Morris, M.J. Is the Vision of Radioligand Therapy for Prostate Cancer Becoming a Reality? An Overview of the Phase III VISION Trial and Its Importance for the Future of Theranostics. J. Nucl. Med. 2019, 60, 1504–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, H.; Baum, R.; Cremerius, U.; Herholz, K.; Hoekstra, O.; Lammertsma, A.A.; Pruim, J.; Price, P. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer 1999, 35, 1773–1782. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50 (Suppl. 1), 122S–150S. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Choudhury, P.S.; Rawal, S.; Goel, H.C.; Rao, S.A. Evaluation of response in patients of metastatic castration resistant prostate cancer undergoing systemic radiotherapy with lutetium177-prostate-specific membrane antigen: A comparison between response evaluation criteria in solid tumors, positron-emission tomography response criteria in solid tumors, European organization for research and treatment of cancer, and MDA criteria assessed by gallium 68-prostate-specific membrane antigen positron-emission tomography-computed tomography. Urol. Ann. 2019, 11, 155–162. [Google Scholar] [CrossRef]
- Seitz, A.K.; Rauscher, I.; Haller, B.; Krönke, M.; Luther, S.; Heck, M.M.; Horn, T.; Gschwend, J.E.; Schwaiger, M.; Eiber, M.; et al. Preliminary results on response assessment using 68Ga-HBED-CC-PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 602–612. [Google Scholar] [CrossRef]
- Vija, A.H.; Cachovan, M. Automated Internal Dosimetry Research Tool Using Quantitative SPECT for the Lu177 Theranostic Application. J. Nucl. Med. 2017, 58 (Suppl. 1). [Google Scholar]
- Kairemo, K.; Joensuu, T. Lu-177-PSMA treatment for metastatic prostate cancer: Case examples of major responses. Clin Transl Imaging 2018, 6, 223–237. [Google Scholar] [CrossRef]
- Ahmadzadehfar, H.; Rahbar, K.; Baum, R.P.; Seifert, R.; Kessel, K.; Bögemann, M.; Kulkarni, H.R.; Zhang, J.; Gerke, C.; Fimmers, R.; et al. Prior therapies as prognostic factors of overall survival in metastatic castration-resistant prostate cancer patients treated with [177Lu]Lu-PSMA-617. A WARMTH multicenter study (the 617 trial). Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, K.; Ahmadzadehfar, H.; Kratochwil, C.; Haberkorn, U.; Schäfers, M.; Essler, M.; Baum, R.P.; Kulkarni, H.R.; Schmidt, M.; Drzezga, A.; et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J. Nucl. Med. 2017, 58, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Thieme, A.; Allmann, J.; D’Alessandria, C.; Maurer, T.; Retz, M.; Tauber, R.; Heck, M.M.; Wester, H.J.; Tamaki, N.; et al. Radiation dosimetry for 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer: Absorbed dose in normal organs and tumor lesions. J. Nucl. Med. 2017, 58, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Ahmadzadehfar, H.; Rahbar, K.; Essler, M.; Biersack, H.J. PSMA-Based Theranostics: A Step-by-Step Practical Approach to Diagnosis and Therapy for mCRPC Patients. Semin. Nucl. Med. 2020, 50, 98–109. [Google Scholar] [CrossRef]
- Baum, R.P.; Kulkarni, H.R.; Schuchardt, C.; Singh, A.; Wirtz, M.; Wiessalla, S.; Schottelius, M.; Mueller, D.; Klette, I.; Wester, H.J. 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. J. Nucl. Med. 2016, 57, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Friederike, V.Ã.; Gosewisch, A.; Kaiser, L.; Gildehaus, F.; Todica, A.; Bartenstein, P.; Boening, G.; Ilhan, H. Pretherapeutic SUV as a predictive parameter for therapy response in PSMA radioligand therapy—Correlation of pre- and posttherapeutic SUV in 68Ga-PSMA-11 PET with absorbed dose and PSA-response. J. Nucl. Med. 2020, 61 (Suppl. 1). [Google Scholar]
- Ljungberg, M.; Celler, A.; Konijnenberg, M.W.; Eckerman, K.F.; Dewaraja, Y.K.; Sjögreen-Gleisner, K. MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy. J. Nucl. Med. 2016, 57, 151–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänscheid, H.; Lapa, C.; Buck, A.K.; Lassmann, M.; Werner, R.A. Dose Mapping After Endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a Single Measurement After 4 Days. J. Nucl. Med. 2018, 59, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No of RLT Cycle | Method | Right Kidney | Left Kidney | Liver | Spleen | Parotid Glands | Submandibular Glands | Lacrimal Glands |
---|---|---|---|---|---|---|---|---|
Gy/GBq | ||||||||
1st | Voxel | 0.31 | 0.30 | 0.03 | 0.01 | 0.11 | 0.24 | 0.80 |
MIRD | 0.36 | 0.35 | 0.03 | 0.03 | ||||
2nd | Voxel | 0.39 | 0.35 | 0.03 | 0.03 | 0.12 | 0.20 | 0.51 |
MIRD | 0.42 | 0.40 | 0.04 | 0.04 | ||||
3rd | Voxel | 0.37 | 0.34 | 0.03 | 0.03 | 0.11 | 0.04 | 0.37 |
MIRD | 0.40 | 0.39 | 0.04 | 0.03 | ||||
4th | Voxel | 0.43 | 0.36 | 0.04 | 0.05 | 0.12 | 0.21 | 0.30 |
MIRD | 0.47 | 0.42 | 0.05 | 0.05 |
Cycle of RLT | LLN | DLN1 | DLN2 | B1 | B2 | B3 |
---|---|---|---|---|---|---|
Gy/GBq | ||||||
1st | 6.89 | 25.57 | 6.8 | 5.55 | 6.25 | 3.75 |
2nd | 6.03 | 9.43 | 3.04 | 0.64 | 1.85 | 1.96 |
3rd | 2.84 | 8.3 | 2.59 | 0.48 | 0.97 | 1.86 |
4th | 2.72 | 7.24 | 2.91 | N/A | N/A | N/A |
Cycle of RLT | LLN | DLN1 | DLN2 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|---|
1st; Volume (mL) | 0.67 | 3.9 | 0.6 | 1.5 | 0.4 | 0.3 | |
SUVmax at | 4 h | 2.69 | 33.56 | 24.73 | 9.5 | 5.72 | 2.9 |
24 h | 2.64 | 14.36 | 11.2 | 4.21 | 2.33 | 0.96 | |
48 h | 2.06 | 9.8 | 8.9 | 2.61 | 1.56 | 0.66 | |
2nd; Volume (mL) | 0.37 | 1.22 | 0.4 | 1.5 | 0.4 | 0.3 | |
SUVmax at | 4 h | 1.14 | 5.73 | 3.56 | 1.83 | 1.23 | 1.32 |
24 h | 0.73 | 2.28 | 1.56 | 0.92 | 0.42 | 0.27 | |
48 h | 0.68 | 1.43 | 1.28 | 0.64 | 0.29 | 0.15 | |
3rd; Volume (mL) | 0.1 | 0.82 | 0.26 | 1.5 | 0.4 | 0.3 | |
SUVmax at | 4 h | N/A | 3.12 | N/A | 1.02 | N/A | N/A |
24 h | N/A | 1.19 | 0.94 | 0.52 | N/A | N/A | |
48 h | N/A | 0.76 | N/A | 0.35 | N/A | N/A | |
4th; Volume (mL) | 0.1 | 0.5 | 0.13 | 1.5 | 0.4 | 0.3 | |
SUVmax at | 4 h | N/A | 1.96 | N/A | 0.66 | N/A | N/A |
24 h | N/A | 0.79 | 0.5 | 0.32 | N/A | N/A | |
48 h | N/A | 0.52 | N/A | 0.22 | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelk, E.; Ruuge, P.; Rohtla, K.; Poksi, A.; Kairemo, K. Radiomics Analysis for 177Lu-DOTAGA-(l-y)fk(Sub-KuE) Targeted Radioligand Therapy Dosimetry in Metastatic Prostate Cancer—A Model Based on Clinical Example. Life 2021, 11, 170. https://doi.org/10.3390/life11020170
Kelk E, Ruuge P, Rohtla K, Poksi A, Kairemo K. Radiomics Analysis for 177Lu-DOTAGA-(l-y)fk(Sub-KuE) Targeted Radioligand Therapy Dosimetry in Metastatic Prostate Cancer—A Model Based on Clinical Example. Life. 2021; 11(2):170. https://doi.org/10.3390/life11020170
Chicago/Turabian StyleKelk, Eve, Priit Ruuge, Kristi Rohtla, Anne Poksi, and Kalevi Kairemo. 2021. "Radiomics Analysis for 177Lu-DOTAGA-(l-y)fk(Sub-KuE) Targeted Radioligand Therapy Dosimetry in Metastatic Prostate Cancer—A Model Based on Clinical Example" Life 11, no. 2: 170. https://doi.org/10.3390/life11020170
APA StyleKelk, E., Ruuge, P., Rohtla, K., Poksi, A., & Kairemo, K. (2021). Radiomics Analysis for 177Lu-DOTAGA-(l-y)fk(Sub-KuE) Targeted Radioligand Therapy Dosimetry in Metastatic Prostate Cancer—A Model Based on Clinical Example. Life, 11(2), 170. https://doi.org/10.3390/life11020170