Qualitative Prediction of Ligand Dissociation Kinetics from Focal Adhesion Kinase Using Steered Molecular Dynamics
Abstract
:1. Introduction
2. Results
2.1. Free Energy Surface for Exit of Ligands from the Binding Site
2.2. Prediction of Experimental Dissociation Rates from Simulated Exit Times
2.3. Prediction of Experimental Dissociation Rates from Structural and Energetic Variables
3. Exit Pathways for Ligands in SMD Simulations
4. Discussion
4.1. Low Barrier in Free Energy Simulations
4.2. Choice of Solvation Model for SMD Simulations
4.3. Outlier Nature of Ligand 29
4.4. Forces Influencing the Experimental Dissociation Rates
5. Materials and Methods
5.1. Ligands, Initial Structures and Force Fields
5.2. Steered Molecular Dynamics Simulations
5.3. Structural and Energetic Analysis of the SMD Simulations
5.4. Umbrella Sampling Simulations and Free Energy Surfaces
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MD | molecular dynamics |
PMF | potential of mean force |
FAK | focal adhesion kinase |
CHARMM | chemistry at Harvard molecular mechanics |
SMD | steered molecular dynamics |
FACTS | fast analytical continuum treatment of solvation |
CGenFF | CHARMM general force field |
CMAP | cross-term map |
References
- Jorgensen, W.L. The Many Roles of Computation in Drug Discovery. Science 2004, 303, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Abel, R.; Wang, L.L.; Mobley, D.L.; Friesner, R.A. A Critical Review of Validation, Blind Testing, and Real-World Use of Alchemical Protein-Ligand Binding Free Energy Calculations. Curr. Top. Med. Chem. 2017, 17, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Lim, N.M.; Wang, L.L.; Abel, R.; Mobley, D.L. Sensitivity in Binding Free Energies Due to Protein Reorganization. J. Chem. Theory Comput. 2016, 12, 4620–4631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobley, D.L.; Gilson, M.K. Predicting Binding Free Energies: Frontiers and Benchmarks. Annu. Rev. Biophys. 2017, 46, 531–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobley, D.L.; Klimovich, P.V. Perspective: Alchemical free energy calculations for drug discovery. J. Chem. Phys. 2012, 137, 230901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Warshel, A. Absolute binding free energy calculations: On the accuracy of computational scoring of protein-ligand interactions. Proteins 2010, 78, 1705–1723. [Google Scholar] [CrossRef] [Green Version]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert. Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Shoichet, B.K.; McGovern, S.L.; Wei, B.Q.; Irwin, J.J. Lead discovery using molecular docking. Curr. Opin. Struct. Biol. 2002, 6, 439–446. [Google Scholar] [CrossRef]
- Wong, C.F. Flexible ligand-flexible protein docking in protein kinase systems. BBA Proteins Proteom. 2008, 1784, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Copeland, R.A.; Pompliano, D.L.; Meek, T.D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 2006, 5, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Cusack, K.P.; Wang, Y.; Hoemann, M.Z.; Marjanovic, J.; Heym, R.G.; Vasudevan, A. Design strategies to address kinetics of drug binding and residence time. Bioorg. Med. Chem. Lett. 2015, 25, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Walkup, G.K.; You, Z.; Ross, P.L.; Allen, E.K.H.; Daryaee, F.; Hale, M.R.; O’Donnell, J.; Ehmann, D.E.; Schuck, V.J.A.; Buurman, E.T. Translating slow-binding inhibition kinetics into cellular and in vivo effects. Nat. Chem. Biol. 2015, 11, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folmer, R.H.A. Drug target residence time: A misleading concept. Drug Discov. Today 2018, 23, 12–16. [Google Scholar] [CrossRef]
- Wong, C.F. Molecular simulation of drug-binding kinetics. Mol. Simul. 2014, 40, 889–903. [Google Scholar] [CrossRef]
- Wong, C.F. Incorporating Drug-Binding Kinetics in Drug Design. In In Silico Drug Discovery and Design: Theory, Methods, Challenges and Applications; Cavasotto, C.N., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 483–505. [Google Scholar]
- Pan, A.C.; Xu, H.; Palpant, T.; Shaw, D.E. Quantitative Characterization of the Binding and Unbinding of Millimolar Drug Fragments with Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 3372–3377. [Google Scholar] [CrossRef]
- Perez-Hernandez, G.; Paul, F.; Giorgino, T.; De Fabritiis, G.; Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 2013, 139, 015102. [Google Scholar] [CrossRef]
- Bowman, G.R.; Huang, X.; Pande, V.S. Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 2009, 49, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Silva, D.A.; Meng, L.; Yue, A.; Huang, X. Quantitatively Characterizing the Ligand Binding Mechanisms of Choline Binding Protein Using Markov State Model Analysis. PLoS Comp. Biol. 2014, 10, e1003767. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.; Zuckerman, D.M. Heterogeneous Path Ensembles for Conformational Transitions in Semiatomistic Models of Adenylate Kinase. J. Chem. Theory Comput. 2010, 6, 3527–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, G.A.; Kim, S. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys. J. 1996, 70, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.W.; Jasnow, D.; Zuckerman, D.M. The “weighted ensemble” path sampling method is statistically exact for a broad class of stochastic processes and binning procedure. J. Chem. Phys. 2010, 132, 054107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotz, S.D.; Dickson, A. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding Reveals Transition State Stabilizing Interactions. J. Am. Chem. Soc. 2018, 140, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Dixon, T.; Lotz, S.D.; Dickson, A. Predicting ligand binding affinity using on- and off-rates for the 495 SAMPL6 SAMPLing challenge. J. Comput. Aided Mol. Des. 2018, 32, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Mollica, L.; Decherchi, S.; Zia, S.R.; Gaspari, R.; Cavalli, A.; Rocchia, W. Kinetics of protein-ligand 497 unbinding via smoothed potential molecular dynamics simulations. Sci. Rep. 2015, 5, 11539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, I.; Frank, A.T. Accelerating Rare Dissociative Processes in Biomolecules Using Selectively Scaled 499 MD Simulations. J. Chem. Theory Comput. 2019, 15, 5817–5828. [Google Scholar] [CrossRef]
- Kokh, D.B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D.; Buchstaller, H.P.; Dreyer, M.K.; Frech, M.; Lowinski, M.; Vallee, F.; et al. Estimation of Drug-Target Residence Times 502 by Ï-Random Acceleration Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018, 14, 3859–3869. [Google Scholar] [CrossRef]
- Elber, R. Long-timescale simulation methods. Curr. Opin. Struct. Biol. 2005, 15, 151–156. [Google Scholar] [CrossRef]
- Faradjian, A.K.; Elber, R. Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 2004, 120, 10880–10889. [Google Scholar] [CrossRef]
- Ray, D.; Andricioaei, I. Weighted ensemble milestoning (WEM): A combined approach for rare event 507 simulations. J. Chem. Phys. 2020, 152, 234114. [Google Scholar] [CrossRef] [PubMed]
- Bolhuis, P.G.; Dellago, C.; Chandler, D. Sampling ensembles of deterministic transition pathways. Faraday Discuss. 1998, 110, 421–436. [Google Scholar] [CrossRef]
- Bolhuis, P.G.; Chandler, D.; Dellago, C.; Geissler, P.L. Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 2002, 53, 291–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paci, E.; Caflisch, A.; Pluckthun, A.; Karplus, M. Forces and energetics of hapten-antibody dissociation: A biased molecular dynamics simulation study. J. Mol. Biol. 2001, 314, 589–605. [Google Scholar] [CrossRef] [Green Version]
- Paci, E.; Karplus, M. Unfolding proteins by external forces and temperature: The importance of topology and energetics. Proc. Natl. Acad. Sci. USA 2000, 97, 6521. [Google Scholar] [CrossRef] [Green Version]
- Schlitter, J.; Engels, M.; Krüger, P.; Jacoby, E.; Wollmer, A. Targeted molecular dynamics simulation of conformational change-application to the T ↔ R transition in insulin. Mol. Sim. 1993, 10, 291–308. [Google Scholar] [CrossRef]
- van der Vaart, A.; Karplus, M. Simulation of conformational transitions by the restricted perturbation-targeted molecular dynamics method. J. Chem. Phys. 2005, 122, 114903. [Google Scholar] [CrossRef]
- Paci, E.; Karplus, M. Forced unfolding of fibronectin type 3 modules: An analysis by biased molecular dynamics simulations. J. Mol. Biol. 1999, 288, 441–459. [Google Scholar] [CrossRef] [Green Version]
- Torrie, G.; Valleau, J. Non-physical sampling distributions in Monte-Carlo free-energy estimation-Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199. [Google Scholar] [CrossRef]
- Potterton, A.; Husseini, F.S.; Southey, M.W.Y.; Bodkin, M.J.; Heifetz, A.; Coveney, P.V.; Townsend-Nicholson, A. Ensemble-Based Steered Molecular Dynamics Predicts Relative Residence Time of A2A Receptor Binders. J. Chem. Theory Comput. 2019, 15, 3316–3330. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zou, R.; Kuang, G.; Långström, B.; Halldin, C.; Ågren, H.; Tu, Y. Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes. J. Chem. Inf. Model. 2019, 59, 3910–3918. [Google Scholar] [CrossRef] [PubMed]
- Braka, A.; Garnier, N.; Bonnet, P.; Aci-Séche, S. Residence Time Prediction of Type 1 and 2 Kinase Inhibitors from Unbinding Simulations. J. Chem. Inf. Model. 2020, 60, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.F. Steered molecular dynamics simulations for uncovering the molecular mechanisms of drug dissociation and for drug screening: A test on the focal adhesion kinase. J. Comput. Chem. 2018, 39, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, T.; Seenisamy, J.; Emmanuvel, L.; Kulkarni, S.S.; Bomke, J.; Rohdich, F.; Greiner, H.; Esdar, C.; Krier, M.; Gradler, U.; et al. Fragment-Based Discovery of New Highly Substituted 1H-Pyrrolo[2,3-b]- and 3H-Imidazolo[4,5-b]-Pyridines as Focal Adhesion Kinase Inhibitors. J. Med. Chem. 2013, 56, 1160–1170. [Google Scholar] [CrossRef]
- Roberts, W.G.; Ung, E.; Whalen, P.; Cooper, B.; Hulford, C.; Autry, C.; Richter, D.; Emerson, E.; Lin, J.; Kath, J.; et al. Antitumor Activity and Pharmacology of a Selective Focal Adhesion Kinase Inhibitor, PF-562,271. Cancer Res. 2008, 68, 1935–1944. [Google Scholar] [CrossRef] [Green Version]
- Schlaepfer, D.D.; Hauck, C.R.; Sieg, D.J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 1999, 71, 435–478. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.T.; Cortesio, C.L.; Huttenlocher, A. FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J. Cell Biol. 2009, 185, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.G.; Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 1935, 31, 875–894. [Google Scholar] [CrossRef]
- Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar] [CrossRef]
- Haberthur, U.; Caflisch, A. FACTS: Fast analytical continuum treatment of solvation. J. Comput. Chem. 2008, 29, 701–715. [Google Scholar] [CrossRef]
- Nunes-Alves, A.; Zuckerman, D.M.; Arantes, G.M. Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways. Biophys. J. 2018, 114, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- MacKerell, A.D.; Bashford, D.; Bellot, M.; Dunbrack, R.L.; Evanseck, J.; Field, M.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef] [PubMed]
- Vanommesleghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I., Jr. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2009, 31, 671–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Maestro; Schrödinger, LLC: New York, NY, USA, 2020.
- Brooks, B.; Brooks, C.L., III; MacKerell, A.D., Jr.; Nilsson, L.; Petrella, R.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comput. Phys. 1999, 151, 283–312. [Google Scholar] [CrossRef]
- Phillips, J.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Im, W.P.; Brooks, C.L. Balancing solvation and intramolecular interactions: Toward a consistent generalized born force field. J. Am. Chem. Soc. 2006, 128, 3728–3736. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.M.; Karplus, M.; McCammon, J.A. Diffusive langevin dynamics of model alkanes. Chem. Phys. Lett. 1979, 65, 4–11. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Gowers, R.J.; Linke, M.; Barnoud, J.; Reddy, T.J.E.; Melo, M.N.; Seyler, S.L.; Domański, J. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Proceedings of the 15th Python in Science Conference, Austin, TX, USA, 11–17 July 2016; Benthall, S., Rostrup, S., Eds.; pp. 98–105. [Google Scholar]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone phi, psi and Side-Chain chi(1) and chi(2) Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, R.B.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr. Inclusion of Many-Body Effects in the Additive CHARMM Protein CMAP Potential Results in Enhanced Cooperativity of alpha-Helix and beta-Hairpin Formation. Biophys. J. 2012, 103, 1045–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A.; Rosenberg, J.M. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13, 1011–1021. [Google Scholar] [CrossRef]
- Ferrenberg, A.M.; Landau, D.P.; Swendsen, R.H. Statistical errors in histogram reweighting. Phys. Rev. E 1995, 51, 5092. [Google Scholar] [CrossRef]
With 29 | Without 29 | |||||
---|---|---|---|---|---|---|
Force (pN) | Slope | Correlation | Residual RMS | Slope | Correlation | Residual RMS |
350 | −0.61 ± 0.30 | −0.50 | 0.91 | −0.89 ± 0.28 | −0.70 | 0.76 |
400 | −0.73 ± 0.21 | −0.71 | 0.62 | −0.92 ± 0.19 | −0.82 | 0.52 |
450 | −0.86 ± 0.21 | −0.76 | 0.63 | −1.06 ± 0.19 | −0.86 | 0.51 |
500 | −0.54 ± 0.23 | −0.56 | 0.68 | −0.78 ± 0.19 | −0.77 | 0.53 |
Independent Variable | Slope | Correlation | Residual RMS | p-Value |
---|---|---|---|---|
total interaction energy | 0.0247 ± 0.0061 | 0.76 | 0.56 | 0.002 |
van der Waals interaction energy | 0.1688 ± 0.0521 | 0.68 | 0.63 | 0.007 |
electrostatic interaction energy | 0.0128 ± 0.0603 | 0.06 | 0.86 | 0.835 |
polar solvation interaction energy | 0.0249 ± 0.0069 | 0.72 | 0.60 | 0.003 |
nonpolar solvation interaction energy | −0.9763 ± 0.2205 | −0.79 | 0.53 | 0.001 |
ligand SASA | −0.0144 ± 0.0046 | −0.67 | 0.64 | 0.008 |
buried SASA | −0.0082 ± 0.0027 | −0.66 | 0.65 | 0.011 |
Ligand | R | R | Experimental (nM) | Experimental Dissociation Rate (s) |
---|---|---|---|---|
2 | −H | −H | 4760 | 1.0 * |
28 | −CH3 | −H | 1700 | 0.56 |
29 | −H | 4-fluorophenyl | 6380 | 0.80 |
30 | −CH3 | 4-fluorophenyl | 554 | 0.071 |
31 | −CN | −H | 147 | 0.40 |
32 | −CN | phenyl | 44 | 0.022 |
33 | −CN | 4-fluorophenyl | 603 | 0.019 |
34 | −CN | cyclohexyl | 242 | 0.12 |
35 | −CN | 4-n-butylphenyl | 430 | 0.028 |
37 | −CF3 | 4-fluorophenyl | 24 | 0.011 |
39 | −CF3 | pyridon-5-yl | 12 | 0.026 |
41 | −CF3 | 4-morpholin-4-yl-phenyl | 35 | 0.0026 |
42 | −CF3 | 6-morpholin-4-yl-pyridin-3-yl | 9 | 0.0042 |
48 | −CF3 | 4-fluorophenyl | 33 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiriti, J.; Wong, C.F. Qualitative Prediction of Ligand Dissociation Kinetics from Focal Adhesion Kinase Using Steered Molecular Dynamics. Life 2021, 11, 74. https://doi.org/10.3390/life11020074
Spiriti J, Wong CF. Qualitative Prediction of Ligand Dissociation Kinetics from Focal Adhesion Kinase Using Steered Molecular Dynamics. Life. 2021; 11(2):74. https://doi.org/10.3390/life11020074
Chicago/Turabian StyleSpiriti, Justin, and Chung F. Wong. 2021. "Qualitative Prediction of Ligand Dissociation Kinetics from Focal Adhesion Kinase Using Steered Molecular Dynamics" Life 11, no. 2: 74. https://doi.org/10.3390/life11020074
APA StyleSpiriti, J., & Wong, C. F. (2021). Qualitative Prediction of Ligand Dissociation Kinetics from Focal Adhesion Kinase Using Steered Molecular Dynamics. Life, 11(2), 74. https://doi.org/10.3390/life11020074