Atheroprotective Properties of Costus spicatus (Jacq.) Sw. in Female Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Anatomical Study
2.3. Phytochemical Study
Extractive Procedure
2.4. Animals
2.5. Toxicological Study
Acute Oral Toxicity
2.6. Pharmacological Study
2.7. Experimental Procedures
2.7.1. Renal Function Assay
2.7.2. Electrocardiography
2.7.3. Blood Pressure Measurement
2.7.4. Biochemical Analysis
2.7.5. Mesenteric Vascular Reactivity
2.7.6. Tissue Redox Status
2.7.7. Histopathological and Morphometric Analyses
2.8. Statistical Analysis
3. Results
3.1. Anatomical Study
3.2. Chemical Constituents of the Ethanol-Soluble Fraction of C. Spicatus (ESCS)
3.3. Toxicological Study
Acute Oral Toxicity
3.4. Pharmacological Study
3.4.1. Body Weight Gain
3.4.2. Renal Function
3.4.3. Electrocardiographic Parameters
3.4.4. Blood Pressure and Heart Rate
3.4.5. Biochemical Analyses
3.4.6. Mesenteric Vascular Reactivity
3.4.7. Tissue Redox Status
3.4.8. Cardiac and Arterial Morphometry
3.4.9. Histopathological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200–201. [Google Scholar] [CrossRef]
- Dutra, R.C.; Campos, M.M.; Santos, A.R.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, B.P.; Bernardo, R.R.; Parente, J.P. Flavonol glycosides from Costus spicatus. Phytochemistry 2000, 53, 87–92. [Google Scholar] [CrossRef]
- Keller, A.C.; Vandebroek, I.; Liu, Y.; Balick, M.J.; Kronenberg, F.; Kennelly, E.J.; Brillantes, A.-M.B. Costus spicatus tea failed to improve diabetic progression in C57BLKS/J db/db mice, a model of type 2 diabetes mellitus. J. Ethnopharmacol. 2009, 121, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Coelho, F.C.; Tirloni, C.A.S.; Marques, A.A.M.; Gasparotto, F.M.; Lívero, F.A.D.R.; Gasparotto-Junior, A. traditional plants used by remaining healers from the region of Grande Dourados, Mato Grosso do Sul, Brazil. J. Relig. Health 2018, 58, 572–588. [Google Scholar] [CrossRef]
- Azevedo, L.; Faria, T.; Pessanha, F.; Araújo, M.; Lemos, G. Triagem fitoquímica e atividade antioxidante de Costus spicatus (Jacq.) S.w. Rev. Bras. Plantas Med. 2014, 16, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Devendran, G.; Sivamani, G. Phytochemical analysis of leaf extract of plant Costus spicatus by gcms method. J. Drug Deliv. Ther. 2015, 5, 24–26. [Google Scholar] [CrossRef]
- Moreno, K.G.T.; Gasparotto-Junior, A.; Dos Santos, A.C.; Palozi, R.A.C.; Guarnier, L.P.; Marques, A.A.M.; Romão, P.V.M.; Lorençone, B.R.; Cassemiro, N.S.; Silva, D.B.; et al. Nephroprotective and antilithiatic activities of Costus spicatus (Jacq.) Sw.: Ethnopharmacological investigation of a species from the Dourados region, Mato Grosso do Sul State, Brazil. J. Ethnopharmacol. 2021, 266, 113409. [Google Scholar] [CrossRef] [PubMed]
- Paes, L.; Mendonça, M.S.; Casas, L. Aspectos Estruturais e Fitoquímicos de partes vegetativas de Costus spicatus (Jacq.) Sw. (Costaceae). Rev. Bras. Plantas Med. 2013, 15, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, B.P.; Bernardo, R.R.; Parente, J.P. A furostanol glycoside from rhizomes of Costus spicatus. Phytochemistry 1999, 51, 931–935. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Parente, J.P. Bioactive polysaccharides from Costus spicatus. Carbohydr. Polym. 2003, 51, 239–242. [Google Scholar] [CrossRef]
- Picanço, L.C.D.S.; Bittencourt, J.A.H.M.; Henriques, S.V.C.; Da Silva, J.S.; Oliveira, J.M.D.S.; Ribeiro, J.R.; Sanjay, A.-B.; Carvalho, J.C.T.; Stien, D.; Da Silva, J.O. Pharmacological activity of Costus spicatusin experimental Bothrops atroxenvenomation. Pharm. Biol. 2016, 54, 2103–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintans-Júnior, L.J.; Santana, M.T.; Melo, M.S.; De Sousa, D.P.; Santos, I.S.; Siqueira, R.S.; Lima, T.C.; Silveira, G.O.; Antoniolli, A.R.; Ribeiro, L.A.A.; et al. Antinociceptive and anti-inflammatory effects of Costus spicatus in experimental animals. Pharm. Biol. 2010, 48, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, S.A.; Senthilkumar, S.; Andrews, S.; Ganesan, S. Anti-diabetic effect of ethanol extract of Costus spicatus jacq. in rhizome extract in streptozotocin-induced diabetic rats—Histological study. J. Drug Deliv. Ther. 2019, 9, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.N.; Gonçalves, M.J.; Amaral, M.T.; Batista, M.T. Antifungal activity of a flavonoid-rich fraction from Costus spicatus leaves against dermatophytes. Planta Med. 2008, 74, PA90. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.A. Influence of sex on cardiovascular drug responses: Role of estrogen. Curr. Opin. Pharmacol. 2017, 33, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Johansen, D.A. Plant Microtechnique and Microscopy, 1st ed.; Oxford University Press: Oxford, MS, USA, 1999; pp. 1–336. [Google Scholar]
- Berlyn, G.P.; Miksche, J.P. Botanical Microtechnique and Cytochemistry, 1st ed.; Iowa State University Press: Ames, IA, USA, 1978; pp. 1–326. [Google Scholar]
- Dos Santos, V.L.P.; Raman, V.; Bobek, V.B.; Migacz, I.P.; Franco, C.R.C.; Khan, I.A.; Budel, J.M. Anatomy and microscopy of Piper caldense, a folk medicinal plant from Brazil. Rev. Bras. Farmacogn. 2018, 28, 9–15. [Google Scholar] [CrossRef]
- Foster, A.S. Practical Plant Anatomy, 1st ed.; R. E. Krieger Pub. Co: Huntington, NY, USA, 1974; pp. 1–228. [Google Scholar]
- Sass, J. Botanical Microtechnique, 1st ed.; Iowa State University Press: Ames, IA, USA, 1958; pp. 1–248. [Google Scholar]
- Farmacopeia Brasileira. Agência Nacional de Vigilância Sanitária—Anvisa. Available online: https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/brasileira (accessed on 21 January 2021).
- Machado, C.D.; Raman, V.; Rehman, J.U.; Maia, B.H.L.N.S.; Meneghetti, E.K.; Almeida, V.P.; Silva, R.Z.; Farago, P.V.; Khan, I.A.; Budel, J.M. Schinus molle: Anatomy of leaves and stems, chemical composition and insecticidal activities of volatile oil against bed bug (Cimex lectularius). Rev. Bras. Farmacogn. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Malone, M.H.; Robichaud, R.C. Hippocratic screening of ethanolic extracts from two Tabernaemontana species. J. Ethnopharmacol. 1989, 27, 120–123. [Google Scholar] [CrossRef]
- Guarnier, L.P.; Romão, P.V.M.; Palozi, R.A.C.; Silva, A.O.; Lorençone, B.R.; Marques, A.A.M.; Dos Santos, A.C.; Souza, R.I.C.; Souza, K.D.; Lourenço, E.L.B.; et al. Development of a predictive model to induce atherogenesis and hepato-renal impairment in female rats. Biomolecules 2019, 9, 664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparotto-Junior, A.; Boffo, M.A.; Lourenço, E.L.B.; Stefanello, M.E.A.; Kassuya, C.A.L.; Marques, M.C.A. Natriuretic and diuretic effects of Tropaeolum majus (Tropaeolaceae) in rats. J. Ethnopharmacol. 2009, 122, 517–522. [Google Scholar] [CrossRef]
- Gasparotto-Junior, A.; Gasparotto, F.M.; Lourenço, E.L.B.; Crestani, S.; Stefanello, M.E.A.; Salvador, M.J.; Da Silva-Santos, J.E.; Marques, M.C.A.; Kassuya, C.A.L. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: Evidence for the inhibition of angiotensin converting enzyme. J. Ethnopharmacol. 2011, 134, 363–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparotto, A., Jr.; Piornedo, R.D.R.; Assreuy, J.; Da Silva-Santos, J.E.; Gasparotto, A. Nitric oxide and K ir 6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats. Eur. J. Pharmacol. 2016, 788, 328–334. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Jiang, Z.-Y.; Hunt, J.V.; Wolff, S.P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 1992, 202, 384–389. [Google Scholar] [CrossRef]
- Homem, I.C.M.; Bobek, V.B.; Szabo, E.M.; Budel, J.M.; Raman, V.; Oliveira, V.B.; Miguel, O.G. Anatomy and histochemistry of leaf and stem of Brazilian endemic species mollinedia clavigera Tul. Braz. Arch. Biol. Technol. 2020, 63, e20180717. [Google Scholar] [CrossRef]
- Tolouei, S.E.L.; Palozi, R.A.C.; Tirloni, C.A.S.; Marques, A.A.M.; Schaedler, M.I.; Guarnier, L.P.; Silva, A.O.; De Almeida, V.P.; Budel, J.M.; Souza, R.I.C.; et al. Ethnopharmacological approaches to Talinum paniculatum (Jacq.) Gaertn.—Exploring cardiorenal effects from the Brazilian Cerrado. J. Ethnopharmacol. 2019, 238, 111873. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.C.; Acunha, T.D.S.; Perin, E.C.; Rombaldi, C.V.; Galli, V.; Chaves, F.C. Untargeted metabolomics of strawberry (Fragaria x ananassa ‘Camarosa’) fruit from plants grown under osmotic stress conditions. J. Sci. Food Agric. 2019, 99, 6973–6980. [Google Scholar] [CrossRef] [PubMed]
- Justesen, U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J. Mass Spectrom. 2001, 36, 169–178. [Google Scholar] [CrossRef] [PubMed]
- March, R.E.; Lewars, E.G.; Stadey, C.J.; Miao, X.-S.; Zhao, X.; Metcalfe, C.D. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int. J. Mass Spectrom. 2006, 248, 61–85. [Google Scholar] [CrossRef]
- Justino, G.C.; Borges, C.M.; Florêncio, M.H. Electrospray ionization tandem mass spectrometry fragmentation of protonated flavone and flavonol aglycones: A re-examination. Rapid Commun. Mass Spectrom. 2009, 23, 237–248. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Wu, Z.; Ding, L. ESI-QqTOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica. J. Mass Spectrom. 2006, 41, 1–22. [Google Scholar] [CrossRef]
- Silva, B.; Bernardo, R.; Parente, J. A New Steroidal Saponin from the Rhizomes of Costus spicatus. Planta Medica 1999, 65, 285–287. [Google Scholar] [CrossRef]
- Vara, D.; Pula, G. Reactive oxygen species: Physiological roles in the regulation of vascular cells. Curr. Mol. Med. 2014, 14, 1103–1125. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D.; Wang, X.Q.; Oveisi, F.; Rad, B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 2000, 36, 142–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, G.J.; Ridker, P.M. Novel clinical markers of vascular wall inflammation. Circ. Res. 2001, 89, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, T.V.; Sobenin, I.A.; Nikolic, D.; Rizzo, M.; Orekhov, A.N. Anti-cytokine therapy for prevention of atherosclerosis. Phytomedicine 2016, 23, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Thompson, P.D.; Panza, G.; Zaleski, A.; Taylor, B. Statin-associated side effects. J. Am. Coll. Cardiol. 2016, 67, 2395–2410. [Google Scholar] [CrossRef] [PubMed]
- Orekhov, A.; Sobenin, I.; Korneev, N.; Kirichenko, T.; Myasoedova, V.; Melnichenko, A.; Balcells, M.; Edelman, E.; Bobryshev, Y.V. Anti-atherosclerotic therapy based on botanicals. Recent Pat. Cardiovasc. Drug Discov. 2013, 8, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, E.E.; Huff, M.W. Antiatherogenic properties of flavonoids: Implications for cardiovascular health. Can. J. Cardiol. 2010, 26, 17A–21A. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic effects of plant flavonoids. BioMed Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants—A review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef]
- Marrelli, M.; Conforti, F.; Araniti, F.; Statti, G.A. Effects of saponins on lipid metabolism: A review of potential health benefits in the treatment of obesity. Molecules 2016, 21, 1404. [Google Scholar] [CrossRef] [Green Version]
- Efferth, T.; Koch, E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug Targets 2011, 12, 122–132. [Google Scholar] [CrossRef]
- Livero, F.A.; Menetrier, J.V.; Lourenco, E.L.B.; Gasparotto, A.; Gasparotto, A., Jr. Cellular and molecular mechanisms of diuretic plants: An overview. Curr. Pharm. Des. 2017, 23, 1247–1252. [Google Scholar] [CrossRef]
Peak | RT (min) | UV (nm) | MF | Negative Mode (m/z) | Positive Mode (m/z) | Compound | ||
---|---|---|---|---|---|---|---|---|
MS [M-H]− | MS/MS | MS [M+H]+ | MS/MS | |||||
1 | 1.1 | - | C5H10O6 | 165.0399 | - | - | - | Pentonic acid |
2 | 1.2 | - | C7H12O8 | 223.0449 | - | - | - | Unknown |
3 | 1.2 | - | C10H19NO7 | - | - | 266.1234 | 248, 230, 212, 182, 152 | Unknown |
4 | 1.6 | - | C6H8O7 | 191.0201 | - | - | - | Citric acid |
5 | 5.4 | 268, 277, 288 | C11H12N2O2 | 203.0822 | - | 205.0971 | 188 | Tryptophan |
6 | 12.1 | 299, 325 | C17H20O11 | 399.0924 | - | 401.1090 | - | Caffeic acid derivative |
7 | 14.6 | 271,334 | C27H30O15 | 593.1509 | 503, 473, 413, 383, 353 | 595.1657 | 505, 475, 439, 421, 409, 391, 379, 355, 325, 295 | 6,8-Di-C-hexosyl apigenin |
8 | 15.9 | 271, 335 | C26H28O14 | 563.1407 | 503, 473, 443, 425, 413, 407, 395, 383, 365, 353, 297 | 565.1568 | 475, 445, 409, 391, 379, 355, 349, 337, 325, 295 | C-hexosyl C-pentosyl apigenin |
9 | 16.4 | 271, 335 | C26H28O14 | 563.1397 | 503, 473, 443, 425, 413, 407, 395, 383, 365, 353 | 565.1560 | 475, 445, 409, 391, 379, 355, 349, 337, 325, 307, 295 | C-hexosyl C-pentosyl apigenin |
10 | 16.5 | 271, 336 | C26H28O14 | 563.1397 | 485, 473, 455, 443, 425, 413, 407, 395, 383, 365, 353 | 565.1569 | 493, 475, 445, 433, 409, 391, 379, 355, 349, 337, 325, 307, 295 | C-hexosyl C-pentosyl apigenin |
11 | 16.7 | - | C11H16O3 | - | - | 197.1179 | 179, 163, 145. | Unknown |
12 | 17.2 | 278, 315 | C21H41N5O7 | - | - | 476.3095 | - | Unknown |
13 | 17.3 | 272, 338 | C26H28O14 | 563.1399 | - | 565.1555 | 475, 445, 391, 379, 355, 337, 325, 307, 295. | C-hexosyl C-pentosyl apigenin |
14 | 17.6 | 271, 336 | C26H28O14 | 563.1397 | 485, 473, 455, 443, 425, 413, 395, 383, 365, 353 | 565.1573 | 475, 445, 433, 391, 379, 355, 325, 307, 295 | C-hexosyl C-pentosyl apigenin |
15 | 18 | 264, 354 | C27H30O16 | 609.1462 | 300, 271, 255 | 611.1586 | 303 | O-hexosyl-deoxyhexosyl quercetin |
16 | 18.2 | - | C15H20O3 | - | - | 249.1489 | - | Unknown |
17 | 18.3 | 271, 337 | C27H30O14 | 577.1557 | - | 579.1706 | - | Glycosylated flavone |
18 | 18.5 | 262, 352 | C27H30O16 | 609.1444 | 300, 285, 271, 255, 243, 179 | 611.1619 | 465, 303 | Rutin* |
19 | 18.8 | 262, 356 | C21H20O12 | 463.0871 | 300, 271, 255, 243, 227, 179 | 465.1051 | 303 | O-hexosyl quercetin |
20 | 19.2 | 270, 338 | C27H30O14 | 577.1514 | - | 579.1728 | 507, 489, 459, 429, 423, 405, 379, 355, 359, 337, 325, 271 | C-hexosyl C-deoxyhexosyl apigenin |
21 | 19.3 | 266, 343 | C27H30O15 | 593.1490 | 447, 429, 284, 255, 227 | 595.1639 | 449, 287 | O-deoxyhexosyl-hexosyl luteolin |
22 | 19.5 | 265, 341 | C27H30O15 | 593.1494 | 284, 255, 227, 151 | 595.1675 | 287 | O-deoxyhexosyl-hexosyl luteolin |
23 | 19.5 | 265, 350 | C20H18O11 | 433.0767 | 300, 283, 271, 255, 243, 227, 179 | 435.0926 | 303 | O-pentosyl quercetin |
24 | 20.0 | 263, 353 | C20H18O11 | 433.0757 | 300, 271, 255, 243, 227, 179 | 435.0936 | 303 | O-pentosyl quercetin |
25 | 20.6 | 263, 340 | C27H30O15 | 593.1494 | 285, 284, 255, 239, 229, 227 | 595.1650 | 449, 287 | O-hexosyl-deoxyhexosyl luteolin |
26 | 20.8 | 264, 350 | C28H32O16 | 623.1596 | 314, 299, 287, 285, 271, 243 | 625.1747 | 479, 317 | O-hexosyl-deoxyhexosyl O-methylquercetin |
27 | 20.9 | 265, 341 | C21H20O11 | 447.0915 | 285, 255, 227, 211 | 449.1073 | 287, 261, 213, 153 | O-hexosyl luteolin |
28 | 21.0 | 264, 348 | C21H20O11 | 447.0915 | 300, 271, 255, 227, 179 | 449.1077 | 303, 257, 229, 153 | O-deoxyhexosyl quercetin |
29 | 21.2 | 262, 349 | C22H22O12 | 477.1044 | 314, 300, 285, 271, 257, 243, 227 | 479.1134 | 317, 302, 285, 274, 257, 246, 228, 153 | O-hexosyl O-methyl quercetin |
30 | 21.3 | 264, 352 | C28H32O16 | 623.1606 | 315, 299, 287, 269, 255, 243 | 625.1768 | 317, 302 | O-hexosyl-deoxyhexosyl O-methyl quercetin |
31 | 21.5 | 265, 342 | C20H18O10 | 417.0817 | 284, 255, 227 | 419.0969 | 287, 268, 258, 231, 213, 165,153 | O-pentosyl luteolin |
32 | 21.5 | 265, 346 | C26H28O14 | 563.1399 | 284, 255, 227 | 565.1553 | 287, 165, 153 | O-pentosyl-deoxyhexosyl luteolin |
33 | 21.6 | 262, 352 | C22H22O12 | 477.1026 | 314, 299, 285, 271, 257, 243, 227, 175 | 479.1198 | 317, 302, 285, 274, 257, 229, 153 | O-hexosyl O-methylquercetin |
34 | 22 | 265, 343 | C20H18O10 | 417.0818 | - | 419.1980 | 287 | O-pentosyl luteolin |
35 | 22.9 | 269, 352 | C21H20O11 | 447.0924 | - | 449.1063 | 317 | O-pentosyl O-methylquercetin |
36 | 23.1 | 267, 350 | C22H22O11 | 461.1072 | 446, 299, 283, 255, 227, 211, 199, 183, 185 | 463.1247 | 301, 286, 258 | O-hexosyl O-methyl kaempferol |
37 | 23.5 | 265, 340 | C21H20O10 | 431.0973 | 284, 255, 227 | 433.140 | 287 | O-deoxyhexosyl luteolin |
38 | 24.9 | 295, 322 | C11H12O4 | 207.0673 | 161, 179 | 209.0810 | 163 | Di-O-methyl caffeic acid |
39 | 28.8 | 299, 315 | C28H38O10 | 533.2409 | 189, 179, 163, 161, 145 | 535.2547 | - | Unknown |
40 | 29.2 | 299, 325 | C29H40O11 | 563.2509 | 548, 251, 221, 207, 193, 189, 175, 160 | 565.2632 | - | Unknown |
41 | 29.6 | - | C51H84O22 | 1047.5367 | 901, 883, 755, 247 | 1031.5444 [M+H-H2O]+ | 869, 415, 397, 379, 293, 271, 253 | Steroidal saponin(di-O-hexosyl di-O-deoxyhexosyl) |
42 | 29.7 | - | C50H82O22 | 1033.5195 | 901, 887, 755, 233 | 1017.5296 [M+H-H2O]+ | 855, 739, 711, 415, 397, 379, 309, 271, 253 | Steroidal saponin (di-O-hexosyl O-pentosyl O-deoxyhexosyl) |
43 | 30.2 | 280, 318 | C18H32O5 | 327.2183 | 239, 229, 221, 211, 183, 171, 165 | 351.2149 [M+Na]+ | - | Unknown |
44 | 30.3 | 268, 348 | C16H12O6 | 299.0567 | 284, 255, 227, 211, 199, 185 | 301.0707 | 286, 269, 258, 241, 229, 213, 193, 188, 184, 153. | O-Methyl kaempferol |
45 | 30.3 | 279, 321 | C18H32O5 | 327.2189 | 239, 229, 221, 211, 197, 193, 185, 183, 171 | 351.2136 [M+Na]+ | - | Unknown |
46 | 30.6 | 280, 325 | C18H32O5 | 327.2190 | 259, 229, 211, 199, 183, 171. | 351.2142 [M+Na]+ | - | Unknown |
47 | 30.6 | - | C44H74O17 | 873.4888 | 873, 741, 595, 433, 379, 349, 289, 275, 247, 233, 205, 191, 179, 163 | 875.5024 | 743 | Steroidal saponin (O-pentosyl O-deoxyhexosyl O-hexosyl) |
48 | 30.7 | - | C39H66O13 | 741.4405 | 741, 595, 433, 415, 325, 287, 205, 179, 163, 143 | 743.4577 | - | Steroidal saponin (O-deoxyhexosyl O-hexosyl) |
49 | 31.1 | - | C38H64O13 | 727.4304 | 727, 595, 433, 251, 233, 191, 179, 161. | 729.4429 | Steroidal saponin (O-pentosyl O-hexosyl) | |
50 | 32.3 | - | C18H34O5 | 329.2329 | 229, 211, 193, 183, 171 | 353.2298 [M+Na]+ | Fatty acid | |
51 | 32.4 | - | C18H16O7 | 343.0821 | - | 345.0979 | 330, 312, 284, 269, 256, 241, 149 | Unknown |
52 | 34.6 | - | C18H30O4 | 309.2079 | 197, 179, 169 | 333.2033 [M+Na]+ | - | Unknown |
53 | 34.8 | - | C18H30O4 | 309.2084 | 211, 197, 183, 169 | 333.2041 [M+Na]+ | - | Unknown |
54 | 35.7 | 282, 321 | C33H56O14 | 675.3568 | 415, 397, 379, 305, 287, 277, 263, 253, 235, 221, 179, 161 | 699.3586 [M+Na]+ | 537 | Unknown |
Parameter | Naïve | NC | ESCS (30 mg/kg) | ESCS (300 mg/kg) | ROSU (5 mg/kg) |
---|---|---|---|---|---|
Urinary volume (mL/100 g/24 h) | 8.67 ± 0.56 | 8.48 ± 0.65 | 14.07 ± 0.82 a,b,c | 15.72 ± 0.97 a,b,c | 9.20 ± 0.67 |
pH | 7.60 ± 0.19 | 6.34 ± 0.15 a | 7.09 ± 0.15 b | 7.37 ± 0.07 b | 7.11 ± 0.16 b |
Density | 1033 ± 2.24 | 1020 ± 1.94 a | 1030 ± 0.98 b | 1031 ± 0.68 b | 1030 ± 2.06 b |
Chloride (µmol/100 g/24 h) | 953 ± 112.70 | 526.20 ± 87.30 a | 898.74 ± 98.69 b | 970.70 ± 88.86 b | 889.80 ± 81.32 b |
Magnesium (mg/100 g/24 h) | 1.36 ± 0.28 | 2.27 ± 0.57 | 1.54 ± 0.43 | 1.15 ± 0.38 | 0.47 ± 0.23 |
Potassium (µmol/100 g/24 h) | 1275 ± 139.80 | 988.90 ± 159.20 | 941.40 ± 84.28 | 881.10 ± 71.03 | 829.20 ± 48.69 |
Sodium (µmol/100 g/24 h) | 641.80 ± 93.46 | 608.90 ± 128 | 413.50 ± 35.03 | 399.90 ± 25.08 | 406.10 ± 25.46 |
Calcium (mg/100 g/24 h) | 1.49 ± 0.13 | 5.94 ± 2.49 | 4.27 ± 0.79 | 3.52 ± 0.55 | 3.58 ± 0.25 |
Creatinine (mg/100 g/24 h) | 2.97 ± 0.18 | 3.73 ± 0.39 | 3.52 ± 0.11 | 3.33 ± 0.14 | 3.15 ± 0.04 |
Naïve | NC | ESCS (30 mg/kg) | ESCS (300 mg/kg) | ROSU (5 mg/kg) | |
---|---|---|---|---|---|
Segments (ms) | |||||
PR | 46.47 ± 2.72 | 42.59 ± 1.59 | 40.83 ± 4.64 | 35.50 ± 4.95 | 41.75 ± 3.70 |
QRS | 37.89 ± 1.37 | 39.57 ± 1.67 | 43.60 ± 2.11 | 42.67 ± 1.66 | 40.20 ± 1.02 |
QT | 134.10 ± 7.66 | 131.60 ± 9.41 | 120.80 ± 6.99 | 115.20 ± 10.86 | 121.40 ± 12.24 |
QTC | 232.70 ± 9.89 | 234.90 ± 15.69 | 240 ± 20.84 | 197 ± 22.95 | 225.40 ± 23.94 |
Waves (mV) | |||||
P | 0.083 ± 0.004 | 0.063 ± 0.003 | 0.052 ± 0.019 | 0.053 ± 0.018 | 0.046 ± 0.006 |
Q | −0.007 ± 0.002 | −0.011 ± 0.002 | −0.025 ± 0.007 | −0.020 ± 0.008 | −0.012 ± 0.010 |
R | 0.374 ± 0.016 | 0.382 ± 0.023 | 0.295 ± 0.040 | 0.330 ± 0.049 | 0.310 ± 0.027 |
S | 0.052 ± 0.017 | 0.014 ± 0.018 | 0.026 ± 0.007 | −0.006 ± 0.010 | 0.006 ± 0.018 |
Parameter | Naïve | NC | ESCS (30 mg/kg) | ESCS (300 mg/kg) | ROSU (5 mg/kg) |
---|---|---|---|---|---|
DBP (mm Hg) | 57.23 ± 5.76 | 56.08 ± 7.89 | 60.23 ± 4.18 | 69.90 ± 7.66 | 64.83 ± 4.29 |
SBP (mm Hg) | 89.93 ± 6.70 | 98.55 ± 10.61 | 95.48 ± 6.89 | 104.90 ± 9.67 | 100.40 ± 9.01 |
MAP (mm Hg) | 74.46 ± 6.06 | 76.94 ± 9.39 | 78.90 ± 5.83 | 89.25 ± 8.06 | 83.38 ± 6.23 |
HR (bpm) | 192.40 ± 18.30 | 228.60 ± 21.57 | 215.60 ± 18.23 | 257.60 ± 33 | 201.60 ± 17.83 |
Parameter | Naïve | NC | ESCS (30 mg/kg) | ESCS (300 mg/kg) | ROSU (5 mg/kg) |
---|---|---|---|---|---|
AST (U/L) | 171.83 ± 43.21 | 120.70 ± 46.02 | 117.20 ± 11.25 | 123.97 ± 12.71 | 118.14 ± 17.35 |
ALT (U/L) | 42.77 ± 6.22 | 46.18 ± 5.51 | 43.88 ± 7.80 | 35.38 ± 7.92 | 48.56 ± 6.98 |
TG (mg/dL) | 69.12 ± 7.11 | 156.11 ± 10.03 a | 80.48 ± 8.77 b | 77.94 ± 9.37 b | 88.25 ± 10.25 b |
TC (mg/dL) | 71.37 ± 14.02 | 168.14 ± 9.13 a | 121.11 ± 6.63 a,b | 109.18 ± 6.18 a,b | 114.06 ± 8.30 a,b |
HDL-C (mg/dL) | 27.12 ± 5.04 | 40.21 ± 8.21 | 56.44 ± 5.15 a | 59.05 ± 8.27 a | 63.12 ± 6.78 a |
VLDL-C (mg/dL) | 13.82 ± 3.22 | 33.63 ± 7.71 a | 8.09 ± 1.13 b | 7.98 ± 0.27 b | 5.01 ± 0.85 b |
LDL-C (mg/dL) | 20.01 ± 2.33 | 96.80 ± 9.32 a | 66.60 ± 7.96 a,b | 56.14 ± 5.47 ab | 55.94 ± 6.58 a,b |
oxLDL (ng/mL) | 0.20 ± 0.05 | 2.52 ± 0.08 a | 1.82 ± 0.12 ab | 1.12 ± 0.11 a,b | 0.90 ± 0.04 a,b |
sVCAM-1 (ng/L) | 2.21 ± 0.04 | 6.43 ± 0.30 a | 4.66 ± 0.11 ab | 4.10 ± 0.18 a,b | 4.60 ± 0.12 a,b |
sICAM-1 (ng/L) | 4.70 ± 0.32 | 12.16 ± 0.77 a | 8.12 ± 0.62 ab | 7.60 ± 0.73 a,b | 6.01 ± 0.24 a,b |
IL-6 (ng/L) | 156.15 ± 11.2 | 298.58 ± 22.1 a | 233.12 ± 21.2 a,b | 214.23 ± 19.3 a,b | 215.21 ± 22.2 a,b |
IL-1β (pg/mL) | 311.11 ± 23.2 | 654.33 ± 22.2 a | 480.22 ± 19.1 a,b | 441.17 ± 25.1 a,b | 400.35 ± 20.3 a,b |
Creatinine (mg/dL) | 0.38 ± 0.09 | 0.36 ± 0.06 | 0.42 ± 0.02 | 0.44 ± 0.08 | 0.38 ± 0.02 |
Urea (mg/dL) | 32.06 ± 2.34 | 37.02 ± 10.09 | 34.65 ± 4.39 | 36.34 ± 5.76 | 38.18 ± 2.08 |
Drug (Dose) | Naïve | NC | ESCS (30 mg/kg) | ESCS (300 mg/kg) | ROSU (5 mg/kg) |
---|---|---|---|---|---|
Phe (nmol) | |||||
1 | 2.150 ± 1.327 | 0.742 ± 0.261 | 0.481 ± 0.574 | 0.265 ± 0.558 | 0.828 ± 0.447 |
3 | 1.054 ± 0.345 | 0.896 ± 0.319 | 0.841 ± 0.575 | 1.270 ± 0.786 | 0.892 ± 0.407 |
10 | 1.757 ± 0.575 | 4.082 ± 0.415 a | 2.501 ± 0.468 b | 2.647 ± 0.454 b | 2.833 ± 0.396 b |
30 | 8.075 ± 1.475 | 13.769 ± 1.427 a | 5.737 ± 2.667 b | 5.148 ± 2.360 b | 15.970 ± 3.579 a,c |
ACh (pmol) | |||||
1 | −3.403 ± 1.644 | −2.471 ± 0.876 | −4.467 ± 6.791 | −2.821 ± 0.751 | 2.302 ± 5.947 |
3 | −4.247 ± 2.190 | −3.073 ± 1.902 | −2.094 ± 2.983 | −3.194 ± 1.153 | −3.113 ± 0.944 |
10 | −6.159 ± 1.376 | −2.919 ± 1.029 a | −4.907 ± 1.437 | −5.119 ± 1.188 | −5.532 ± 1.712 |
30 | −9.194 ± 1.269 | −4.383 ± 1.226 a | −6.424 ± 2.233 | −6.665 ± 1.897 | −5.820 ± 2.142 |
SNP (pmol) | |||||
0.1 | −2.170 ± 1.135 | −2.114 ± 0.972 | 1.692 ± 0.796 | 0.768 ± 0.916 | −0.885 ± 0.961 |
0.3 | −3.054 ± 0.814 | −4.402 ± 1.762 | −1.889 ± 1.219 | −3.042 ± 1.369 | −3.129 ± 12.067 |
1 | −4.395 ± 1.380 | −6.660 ± 3.275 | −5.711 ± 0.763 | −4.262 ± 2.384 | −4.286 ± 1.034 |
3 | −4.571 ± 2.987 | −4.402 ± 1.762 | −5.697 ± 4.579 | −5.045 ± 3.250 | −4.336 ± 2.074 |
Parameter | Naïve | NC | ESCS (30 mg/kg) | ESCS (300 mg/kg) | ROSU (5 mg/kg) |
---|---|---|---|---|---|
Heart | |||||
SOD (unit of SOD/g tissue) | 25.67 ± 1.18 | 27.92 ± 1.90 | 71.88 ± 2.31 a,b | 123.30 ± 4.78 a,b,c | 74.06 ± 2.15 a,b |
LPO (nmol hydroperoxides/g tissue) | 225. 40 ± 77.10 | 219.01 ± 46.36 | 222.50 ± 16.20 | 212.30 ± 12.57 | 223.50 ± 16.45 |
Aorta | |||||
SOD (unit of SOD/g tissue) | 22.62 ± 0.81 | 22.41 ± 1.85 | 53.39 ± 3.61 a,b | 92.37 ± 2.05 a,b,c | 44.33 ± 1.37 a,b |
LPO (nmol hydroperoxides/g tissue) | 145.20 ± 27.08 | 439.20 ± 34.41 a | 181.10 ± 19.34 b | 185.9 ± 26.72 b | 188.70 ± 28.10 b |
Kidney | |||||
SOD (unit of SOD/g tissue) | 18.17 ± 4.54 | 24.59 ± 6.38 | 103.90 ± 6.41 a,b | 132.30 ± 6.70 a,b,c | 90.11 ± 5.17 a,b |
LPO (nmol hydroperoxides/g tissue) | 108.40 ± 17.53 | 262.90 ± 26.16 a | 147.20 ± 21.19 b | 151.90 ± 27.84 b | 148.30 ± 23.67 b |
Parameter | Naïve | NC | ESCS (30 mg/kg) | ESCS (300 mg/kg) | ROSU (5 mg/kg) |
---|---|---|---|---|---|
Right ventricle (µm) | 365.60 ± 4.32 | 345.90 ± 27.53 | 395.90 ± 33.17 | 362.60 ± 28.85 | 402.60 ± 32.09 |
Left ventricle (µm) | 757.70 ± 76.72 | 629.60 ± 76.90 | 638.50 ± 60 | 658.30 ± 56.36 | 740.5 ± 44.70 |
IV septum (µm) | 527.21 ± 49.39 | 424.34 ± 47.20 | 435.70 ± 36.47 | 515.20 ± 26.92 | 523.50 ± 44.41 |
SA (intima layer; µm) | 3.78 ± 0.57 | 64.80 ± 3.67 a | 5.11 ± 0.59 b | 4.64 ± 0.39 b | 5.06 ± 0.67 b |
CA (intima layer; µm) | 2.95 ± 0.29 | 29.61 ± 2.49 a | 5.02 ± 0.89 b | 3.36 ± 0.48 b | 2.51 ± 0.25 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorençone, B.R.; Guarnier, L.P.; Palozi, R.A.C.; Romão, P.V.M.; Marques, A.A.M.; Klider, L.M.; Souza, R.I.C.; dos Santos, A.C.; Tirloni, C.A.S.; Cassemiro, N.S.; et al. Atheroprotective Properties of Costus spicatus (Jacq.) Sw. in Female Rats. Life 2021, 11, 212. https://doi.org/10.3390/life11030212
Lorençone BR, Guarnier LP, Palozi RAC, Romão PVM, Marques AAM, Klider LM, Souza RIC, dos Santos AC, Tirloni CAS, Cassemiro NS, et al. Atheroprotective Properties of Costus spicatus (Jacq.) Sw. in Female Rats. Life. 2021; 11(3):212. https://doi.org/10.3390/life11030212
Chicago/Turabian StyleLorençone, Bethânia Rosa, Lucas Pires Guarnier, Rhanany Alan Calloi Palozi, Paulo Vitor Moreira Romão, Aline Aparecida Macedo Marques, Lislaine Maria Klider, Roosevelt Isaias Carvalho Souza, Ariany Carvalho dos Santos, Cleide Adriane Signor Tirloni, Nadla Soares Cassemiro, and et al. 2021. "Atheroprotective Properties of Costus spicatus (Jacq.) Sw. in Female Rats" Life 11, no. 3: 212. https://doi.org/10.3390/life11030212
APA StyleLorençone, B. R., Guarnier, L. P., Palozi, R. A. C., Romão, P. V. M., Marques, A. A. M., Klider, L. M., Souza, R. I. C., dos Santos, A. C., Tirloni, C. A. S., Cassemiro, N. S., Silva, D. B., Manfron Budel, J., & Gasparotto Junior, A. (2021). Atheroprotective Properties of Costus spicatus (Jacq.) Sw. in Female Rats. Life, 11(3), 212. https://doi.org/10.3390/life11030212