Effects and Safety of Convalescent Plasma Administration in a Group of Polish Pediatric Patients with COVID-19: A Case Series
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Elezkurtaj, S.; Greuel, S.; Ihlow, J.; Michaelis, E.G.; Bischoff, P.; Kunze, C.A.; Sinn, B.V.; Gerhold, M.; Hauptmann, K.; Ingold-Heppner, B.; et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep. 2021, 11, 4263. [Google Scholar] [CrossRef] [PubMed]
- Sahu, K.K.; Borogovac, A.; Cerny, J. COVID-19 related immune hemolysis and thrombocytopenia. J. Med. Virol. 2021, 93, 1164–1170. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19) Situation Report—Weekly Epidemiological Update—12 January 2021. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update---12-january-2021 (accessed on 12 January 2021).
- European Centre for Disease Prevention and Control. COVID-19 Situation Update for the EU/EEA, as of 19 March 2021. Available online: https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea (accessed on 12 January 2021).
- Raciborski, F.; Pinkas, J.; Jankowski, M.; Sierpinski, R.; Zgliczynski, W.; Szumowski, Ł.; Rakocy, K.; Wierzba, W.; Gujski, M. Dynamics of the coronavirus disease 2019 outbreak in Poland: An epidemiological analysis of the first 2 months of the epidemic. Pol. Arch. Intern. Med. 2020, 130, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Zachariah, P.; Johnson., C.L.; Halabi, K.C.; Ahn, D.; Sen, A.I.; Fischer, A.; Banker, S.L.; Giordano, M.; Manice, C.S.; Diamond, R.; et al. Epidemiology, Clinical Features, and Disease Severity in Patients with Coronavirus Disease 2019 (COVID-19) in a Children’s Hospital in New York City, New York. JAMA Pediatr. 2020, 174, e202430. [Google Scholar] [CrossRef]
- Chao, J.Y.; Derespina, K.R.; Herold, B.C.; Goldman, D.L.; Aldrich, M.; Weingarten, J.; Ushay, H.M.; Cabana, M.D.; Medar, S.S. Clinical Characteristics and Outcomes of Hospitalized and Critically Ill Children and Adolescents with Coronavirus Disease 2019 at a Tertiary Care Medical Center in New York City. J. Pediatr. 2020, 223, 14–19. [Google Scholar] [CrossRef]
- Henry, B.M.; Lippi, G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol. 2020, 52, 1193–1194. [Google Scholar] [CrossRef] [Green Version]
- Ludvigsson, J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef]
- Rathore, V.; Galhotra, A.; Pal, R.; Sahu, K.K. COVID-19 Pandemic and Children: A Review. J. Pediatr. Pharmacol. Ther. 2020, 25, 574–585. [Google Scholar] [CrossRef]
- Zaffanello, M.; Piacentini, G.; Nosetti, L.; Franchini, M. The use of convalescent plasma for pediatric patients with SARS-CoV-2: A systematic literature review. Transfus. Apher. Sci. 2020, 103043. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, P.; Dai, R.; Lv, X.; Yuan, S.; Zhang, Y.; Guo, Y.; Li, R.; Yu, Q.; Zhu, K. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Int. Immunopharmacol. 2021, 91, 107262. [Google Scholar] [CrossRef]
- Hachim, A.; Kavian, N.; Cohen, C.A.; Chin, A.; Chu, D.; Mok, C.; Tsang, O.; Yeung, Y.C.; Perera, R.; Poon, L.; et al. ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nat. Immunol. 2020, 21, 1293–1301. [Google Scholar] [CrossRef]
- Amanat, F.; Stadlbauer, D.; Strohmeier, S.; Nguyen, T.; Chromikova, V.; McMahon, M.; Jiang, K.; Arunkumar, G.A.; Jurczyszak, D.; Polanco, J.; et al. serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. 2020, 26, 1033–1036. [Google Scholar] [CrossRef]
- Lv, H.; Wu, N.C.; Tsang, O.T.; Yuan, M.; Perera, R.; Leung, W.S.; So, R.; Chan, J.; Yip, G.K.; Chik, T.; et al. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell. Rep. 2020, 31, 107725. [Google Scholar] [CrossRef]
- Robbiani, D.F.; Gaebler, C.; Muecksch, F.; Lorenzi, J.; Wang, Z.; Cho, A.; Agudelo, M.; Barnes, C.O.; Gazumyan, A.; Finkin, S.; et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020, 584, 437–442. [Google Scholar] [CrossRef]
- Luke, T.C.; Kilbane, E.M.; Jackson, J.L.; Hoffman, S.L. Meta-analysis: Convalescent blood products for Spanish influenza pneumonia: A future H5N1 treatment? Ann. Intern. Med. 2006, 145, 599–609. [Google Scholar] [CrossRef]
- Soo, Y.O.; Cheng, Y.; Wong, R.; Hui, D.S.; Lee, C.K.; Tsang, K.K.; Ng, M.H.; Chan, P.; Cheng, G.; Sung, J.J. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin. Microbiol. Infect. 2004, 10, 676–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An Griensven, J.; Edwards, T.; de Lamballerie, X.; Semple, M.G.; Gallian, P.; Baize, S.; Horby, P.W.; Raoul, H.; Magassouba, N.; Antierens, A.; et al. Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea. N. Engl. J. Med. 2016, 374, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Soni, K.D.; Khanna, P. Convalescent plasma is a clutch at straws in COVID-19 management! A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 1111–1118. [Google Scholar] [CrossRef]
- Rajendran, K.; Krishnasamy, N.; Rangarajan, J.; Rathinam, J.; Natarajan, M.; Ramachandran, A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J. Med. Virol. 2020, 92, 1475–1483. [Google Scholar] [CrossRef]
- Jin, H.; Reed, J.C.; Liu, S.; Ho, H.E.; Lopes, J.P.; Ramsey, N.B.; Waqar, O.; Rahman, F.; Aberg, J.A.; Bouvier, N.M.; et al. Three patients with X-linked agammaglobulinemia hospitalized for COVID-19 improved with convalescent plasma. J. Allergy. Clin. Immunol. Pract. 2020, 8, 3594–3596. [Google Scholar] [CrossRef] [PubMed]
- Shankar, R.; Radhakrishnan, N.; Dua, S.; Arora, S.; Rana, M.; Sahu, D.K.; Rai, S.; Gupta, D.K. Convalescent plasma to aid in recovery of COVID-19 pneumonia in a child with acute lymphoblastic leukemia. Transfus. Apher. Sci. 2020, 102956. [Google Scholar] [CrossRef] [PubMed]
- Balashov, D.; Trakhtman, P.; Livshits, A.; Kovalenko, I.; Tereshenko, G.; Solopova, G.; Petraikina, E.; Maschan, A.; Novichkova, G. SARS-CoV-2 convalescent plasma therapy in pediatric patient after hematopoietic stem cell transplantation. Transfus. Apher. Sci. 2020, 102983. [Google Scholar] [CrossRef]
- Figlerowicz, M.; Mania, A.; Lubarski, K.; Lewandowska, Z.; Służewski, W.; Derwich, K.; Wachowiak, J.; Mazur-Melewska, K. First case of convalescent plasma transfusion in a child with COVID-19-associated severe aplastic anemia. Transfus. Apher. Sci. 2020, 59, 102866. [Google Scholar] [CrossRef]
- Schwartz, S.P.; Thompson, P.; Smith, M.; Lercher, D.M.; Rimland, C.A.; Bartelt, L.; Park, Y.A.; Weiss, S.; Markmann, A.J.; Raut, R.; et al. Convalescent Plasma Therapy in Four Critically Ill Pediatric Patients with Coronavirus Disease 2019: A Case Series. Crit. Care Explor. 2020, 2, e0237. [Google Scholar] [CrossRef]
- Rodriguez, Z.; Shane, A.L.; Verkerke, H.; Lough, C.; Zimmerman, M.G.; Suthar, M.; Wrammert, J.; MacDonald, H.; Wolf, M.; Clarke, S.; et al. COVID-19 convalescent plasma clears SARS-CoV-2 refractory to remdesivir in an infant with congenital heart disease. Blood Adv. 2020, 4, 4278–4281. [Google Scholar] [CrossRef] [PubMed]
- Greene, A.G.; Saleh, M.; Roseman, E.; Sinert, R. Toxic shock-like syndrome and COVID-19: Multisystem inflammatory syndrome in children (MIS-C). Am. J. Emerg. Med. 2020, 38, 2492.e5–2492.e6. [Google Scholar] [CrossRef] [PubMed]
- Diorio, C.; Anderson, E.M.; McNerney, K.O.; Goodwin, E.C.; Chase, J.C.; Bolton, M.J.; Arevalo, C.P.; Weirick, M.E.; Gouma, S.; Vella, L.A.; et al. Convalescent plasma for pediatric patients with SARS-CoV-2-associated acute respiratory distress syndrome. Pediatr. Blood Cancer 2020, 67, e28693. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Echevarría, A.; Pérez-Martínez, A.; Gonzalez del Valle, L.; Ara, M.F.; Melendo, S.; Ruiz de Valbuena, M.; Vazquez-Martinez, J.L.; Morales-Martínez, A.; Remesal, A.; Sándor-Bajusz, K.A.; et al. Compassionate use of remdesivir in children with COVID-19. Eur. J. Pediatr. 2020, 1–6. [Google Scholar] [CrossRef]
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Calò Carducci, F.I.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc. Health 2020, 4, 653–661. [Google Scholar] [CrossRef]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.; Berwanger, O.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [CrossRef]
- Posfay-Barbe, K.M.; Wagner, N.; Gauthey, M.; Moussaoui, D.; Loevy, N.; Diana, A.; L’Huillier, A.G. COVID-19 in Children and the Dynamics of Infection in Families. Pediatrics 2020, 146, e20201576. [Google Scholar] [CrossRef]
- Mania, A.; Mazur-Melewska, K.; Lubarski, K.; Kuczma-Napierała, J.; Mazurek, J.; Jończyk-Potoczna, K.; Służewski, W.; Figlerowicz, M. Wide spectrum of clinical picture of COVID-19 in children—From mild to severe disease. J. Infect. Public Health 2020, 14, 374–379. [Google Scholar] [CrossRef] [PubMed]
- She, J.; Liu, L.; Liu, W. COVID-19 epidemic: Disease characteristics in children. J. Med. Virol. 2020, 92, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, J.; Kuno, T.; Takagi, H.; Sumitomo, N. Clinical characteristics of COVID-19 in children: A systematic review. Pediatr. Pulmonol. 2020, 55, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; el Burai Felix, S.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, January 22-May 30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef]
- Liguoro, I.; Pilotto, C.; Bonanni, M.; Ferrari, M.E.; Pusiol, A.; Nocerino, A.; Vidal, E.; Cogo, P. SARS-COV-2 infection in children and newborns: A systematic review. Eur. J. Pediatr. 2020, 179, 1029–1046. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, H.; Yuan, C.; Yao, C.; Luo, W.; Shen, X.; Wang, J.; Shao, J.; Xiang, Y. Clinical and Immune Features of Hospitalized Pediatric Patients With Coronavirus Disease 2019 (COVID-19) in Wuhan, China. JAMA Netw. Open 2020, 3, e2010895. [Google Scholar] [CrossRef]
- Denina, M.; Scolfaro, C.; Silvestro, E.; Pruccoli, G.; Mignone, F.; Zoppo, M.; Ramenghi, U.; Garazzino, S. Lung Ultrasound in Children With COVID-19. Pediatrics 2020, 146, e20201157. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cui, H.; Li, K.; Fang, Y.; Li, S. Chest computed tomography in children with COVID-19 respiratory infection. Pediatr. Radiol. 2020, 50, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Perez, K.K.; Ashraf, M.; Chen, J.; Castillo, B.; Christensen, P.A.; Eubank, T.; Bernard, D.W.; Eagar, T.N.; Long, S.W.; et al. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. Am. J. Pathol. 2020, 190, 1680–1690. [Google Scholar] [CrossRef]
- Moniuszko-Malinowska, A.; Czupryna, P.; Zarębska-Michaluk, D.; Tomasiewicz, K.; Pancewicz, S.; Rorat, M.; Dworzańska, A.; Sikorska, K.; Bolewska, B.; Lorenc, B.; et al. Convalescent Plasma Transfusion for the Treatment of COVID-19-Experience from Poland: A Multicenter Study. J. Clin. Med. 2020, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Sahu, K.K.; Mishra, A.K.; Raturi, M.; Lal, A. Current Perspectives of convalescent plasma therapy in COVID-19. Acta Biomed. 2020, 91, e2020175. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Ji, Y.; Wang, J.; Zhang, X. Efficacy of human coronavirus immune convalescent plasma for the treatment of corona virus disease -19 disease in hospitalized children: A protocol for systematic review and meta analysis. Medicine 2020, 99, e22017. [Google Scholar] [CrossRef] [PubMed]
No. | Sex | Age (yr) | Comorbidities | CP Anti-SARS-CoV-2 Titer | Symptoms Onset to Admission (Days) | Admission to Transfusion (Days) | Length of Hospital Stay (Days) | Negative PCR (Days after Transfusion) | Anti-Inflammatory Treatment | Chest X-ray | Disease Severity (Oxygen Demand), Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | F | 6 | aplastic anaemia | 1:600 | 3 | 37 | 59 | 3 | DEX 0.3 mg/kg/24h | normal | Mo, T* |
2 | F | 17 | ADEM | 1:1850 | 2 | 10 | 20 | 11 | MPRED 30 mg/kg/24h | normal | Mo, R&D |
3 | M | 14 | CKD. KTx | 1:600 | 2 | 12 | 20 | 6 | PRED 0.1 mg/kg/24h | normal | Mo, R&D |
4 | M | 12 | CP. epilepsy. Chiari malformation | 1:250 | 5 | 18 | 35 | 8 | DEX 0.15 mg/kg/24h | parenchymal consolidations | S (FiO2 max 0.4), R&D |
5 | M | 17 | CP. epilepsy | 1:650 | 5 | 7 | 31 | 8 | DEX 0.15 mg/kg/24h | parenchymal consolidations | S (FiO2 max. 0.8), R&D |
6 | F | 16 | anorexia nervosa | 1:600 | 33 | 3 | normal | Mi, R&D | |||
7 | F | 11 | nephrotic syndrome | 1:700 | 0 | 5 | 17 | 11 | PRED 1.7 mg/kg/24h | normal | Mo, R&D |
8 | M | 15 | non-compaction cardiomyopathy | 1:1700 | 2 | 6 | 9 | 3 | DEX 0.15 mg/kg/24h | parenchymal consolidations | Mo (face mask O2 flow 6 L/min), R&D |
9 | M | 8 | suspected lymphoma | 1:650 | 5 | 6 | 8 | 3 | enlarged mediastinal shadow | Mo, R&D | |
10 | F | 6/12 | thermal burn | 1:700 | 8 | 3 | peribronchial consolidations | Mi, R&D | |||
11 | F | 1 | sepsis. HUS | 1:1600 | 2 | 3 | 22 | 3 | parenchymal consolidations | S (FiO2 max 0.35), R&D | |
12 | M | 17 | FA. DCM | 1:600 | 7 | 10 | 17 | 11 | DEX 0.15 mg/kg/24h | parenchymal consolidations | Mo (face mask O2 flow 7 L/min), R&D |
13 | F | 5/12 | renal agenesis. vesicostomy. VSD | 1:550 | 0 | 3 | 15 | 30 | normal | Mo, R&D |
1 Day before CP Transfusion | 3 Days after CP Transfusion | |
---|---|---|
Body Temperature [°C] | 38.0 (36.6–38.5) | 36.6 (36.5–36.7) |
WBC [×109/L] | 8.85 (5.18–12.6) | 11.05 (4.77–11.9) |
HGB [g/dL] | 12.6 (9.8–13.7) | 11.3 (10.2–12.6) |
Platelets [×109/L] | 216 (152–285) | 247 (216–295) |
Neutrophils [×109/L] | 6.21 (2.66–9.43) | 5.62 (2.72–7.93) |
Lymphocytes [×109/L] | 1.52 (0.91–2.26) | 1.91 (1.52–2.87) |
APTT [s] | 30.7 (28.9–32.8) | 26.2 (25.7–29.1) |
INR | 1.17 (1.13–1.42) | 1.1 (1.02–1.28) |
Fibrinogen [N: 180–350 mg/dL] | 275 (203–353) | 249 (189.5–390.5) |
D-dimer [N: <0.55 mg/L] | 2.12 (0.65–4.62) | 1.32 (0.74–2.44) |
CRP [N: <0.5 mg/dL] | 1.39 (0.14–3.46) | 0.38 (0.02–6.39) |
ALT [N: <39 IU/L] | 16 (9–45) | 38 (17–43) |
AST [N: <47 IU/L] | 30 (17–50) | 20 (17–36) |
LDH [N: 110–295 IU/L] | 285 (244–465) | n/a |
CK [N: <154 U/L] | 81 (37–233) | 122 (95–149) |
Ferritin [N: 15–300 ng/mL] | 173 (128.5–441.5) | n/a |
BNP [N: <100 pg/mL] | 128.1 (57.3–207.1) | 136.75 (97.7–175.8) |
IL-6 [N: <7 pg/mL] | 6.4 (1–11) | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małecki, P.; Faltin, K.; Mania, A.; Mazur-Melewska, K.; Cwalińska, A.; Zawadzka, A.; Bukowska, A.; Lisowska, K.; Graniczna, K.; Figlerowicz, M. Effects and Safety of Convalescent Plasma Administration in a Group of Polish Pediatric Patients with COVID-19: A Case Series. Life 2021, 11, 247. https://doi.org/10.3390/life11030247
Małecki P, Faltin K, Mania A, Mazur-Melewska K, Cwalińska A, Zawadzka A, Bukowska A, Lisowska K, Graniczna K, Figlerowicz M. Effects and Safety of Convalescent Plasma Administration in a Group of Polish Pediatric Patients with COVID-19: A Case Series. Life. 2021; 11(3):247. https://doi.org/10.3390/life11030247
Chicago/Turabian StyleMałecki, Paweł, Kamil Faltin, Anna Mania, Katarzyna Mazur-Melewska, Agnieszka Cwalińska, Anna Zawadzka, Alicja Bukowska, Katarzyna Lisowska, Katarzyna Graniczna, and Magdalena Figlerowicz. 2021. "Effects and Safety of Convalescent Plasma Administration in a Group of Polish Pediatric Patients with COVID-19: A Case Series" Life 11, no. 3: 247. https://doi.org/10.3390/life11030247
APA StyleMałecki, P., Faltin, K., Mania, A., Mazur-Melewska, K., Cwalińska, A., Zawadzka, A., Bukowska, A., Lisowska, K., Graniczna, K., & Figlerowicz, M. (2021). Effects and Safety of Convalescent Plasma Administration in a Group of Polish Pediatric Patients with COVID-19: A Case Series. Life, 11(3), 247. https://doi.org/10.3390/life11030247