Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Immunohistochemical Staining
2.3. Tumor Cell Lines
2.4. Immunophenotyping via Flow Cytometry
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Immunohistochemical Expression of Target Proteins in Primary and Advanced Melanoma
3.3. Correlation of Target Antigen Expression with Clinical Parameters
3.4. HER2 and GD2 Expression in Primary Melanoma Cell Lines
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Brawley, V.S.; Hegde, M.; Robertson, C.; Ghazi, A.; Gerken, C.; Liu, E.; Dakhova, O.; Ashoori, A.; Corder, A.; et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. 2015, 33, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Zeltsman, M.; Dozier, J.; McGee, E.; Ngai, D.; Adusumilli, P.S. CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl. Res. 2017, 187, 1–10. [Google Scholar] [CrossRef]
- Middleton, M.R.; McAlpine, C.; Woodcock, V.K.; Corrie, P.; Infante, J.R.; Steven, N.M.; Evans, T.R.J.; Anthoney, A.; Shoushtari, A.N.; Hamid, O.; et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma. Clin. Cancer. Res. 2020, 26, 5869–5878. [Google Scholar] [CrossRef]
- Maio, M. Melanoma as a model tumour for immuno-oncology. Ann. Oncol. 2012, 23 (Suppl. S8), viii10–viii14. [Google Scholar] [CrossRef]
- Brichard, V.; Van Pel, A.; Wölfel, T.; Wölfel, C.; De Plaen, E.; Lethé, B.; Coulie, P.; Boon, T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 1993, 178, 489–495. [Google Scholar] [CrossRef]
- Bakker, A.B.; Schreurs, M.W.; de Boer, A.J.; Kawakami, Y.; Rosenberg, S.A.; Adema, G.J.; Figdor, C.G. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J. Exp. Med. 1994, 179, 1005–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Song, M.; Stevanović, S.; Jankowiak, C.; Paschen, A.; Rammensee, H.G.; Schadendorf, D. Identification of a new HLA-A(*)0201-restricted T-cell epitope from the tyrosinase-related protein 2 (TRP2) melanoma antigen. Int. J. Cancer 2000, 87, 399–404. [Google Scholar] [CrossRef]
- Robbins, P.F.; El-Gamil, M.; Li, Y.F.; Zeng, G.; Dudley, M.; Rosenberg, S.A. Multiple HLA class II-restricted melanocyte differentiation antigens are recognized by tumor-infiltrating lymphocytes from a patient with melanoma. J. Immunol. 2002, 169, 6036–6047. [Google Scholar] [CrossRef]
- Paschen, A.; Jing, W.; Drexler, I.; Klemm, M.; Song, M.; Müller-Berghaus, J.; Nguyen, X.D.; Osen, W.; Stevanovic, S.; Sutter, G.; et al. Melanoma patients respond to a new HLA-A*01-presented antigenic ligand derived from a multi-epitope region of melanoma antigen TRP-2. Int. J. Cancer 2005, 116, 944–948. [Google Scholar] [CrossRef]
- Kushimoto, T.; Basrur, V.; Valencia, J.; Matsunaga, J.; Vieira, W.D.; Ferrans, V.J.; Muller, J.; Appella, E.; Hearing, V.J. A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc. Natl. Acad. Sci. USA 2001, 98, 10698–10703. [Google Scholar] [CrossRef] [Green Version]
- Raposo, G.; Tenza, D.; Murphy, D.M.; Berson, J.F.; Marks, M.S. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 2001, 152, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Simon, B.; Harrer, D.C.; Schuler-Thurner, B.; Schuler, G.; Uslu, U. Arming T Cells with a gp100-Specific TCR and a CSPG4-Specific CAR Using Combined DNA- and RNA-Based Receptor Transfer. Cancers (Basel) 2019, 11, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, M.B.; Perry-Lalley, D.; Robbins, P.F.; Li, Y.; el-Gamil, M.; Rosenberg, S.A.; Yang, J.C. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med. 1997, 185, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, M.R.; Fitzgerald, E.B.; Southwood, S.; Sette, A.; Rosenberg, S.A.; Kawakami, Y. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res. 1998, 58, 4895–4901. [Google Scholar] [PubMed]
- Bronte, V.; Apolloni, E.; Ronca, R.; Zamboni, P.; Overwijk, W.W.; Surman, D.R.; Restifo, N.P.; Zanovello, P. Genetic vaccination with “self” tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res. 2000, 60, 253–258. [Google Scholar] [PubMed]
- Schreurs, M.W.; Eggert, A.A.; de Boer, A.J.; Vissers, J.L.; van Hall, T.; Offringa, R.; Figdor, C.G.; Adema, G.J. Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res. 2000, 60, 6995–7001. [Google Scholar]
- Joerger, A.C.; Fersht, A.R. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu. Rev. Biochem. 2016, 85, 375–404. [Google Scholar] [CrossRef]
- Sabapathy, K.; Lane, D.P. Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 2018, 15, 13–30. [Google Scholar] [CrossRef]
- Benjamin, C.L.; Melnikova, V.O.; Ananthaswamy, H.N. P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. Adv. Exp. Med. Biol. 2008, 624, 265–282. [Google Scholar]
- Malekzadeh, P.; Pasetto, A.; Robbins, P.F.; Parkhurst, M.R.; Paria, B.C.; Jia, L.; Gartner, J.J.; Hill, V.; Yu, Z.; Restifo, N.P.; et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Investig. 2019, 129, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.; Parkhurst, M.; Robbins, P.F.; Tran, E.; Lu, Y.C.; Jia, L.; Gartner, J.J.; Pasetto, A.; Deniger, D.; Malekzadeh, P.; et al. Immunologic Recognition of a Shared p53 Mutated Neoantigen in a Patient with Metastatic Colorectal Cancer. Cancer Immunol. Res. 2019, 7, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Julien, S.; Bobowski, M.; Steenackers, A.; Le Bourhis, X.; Delannoy, P. How Do Gangliosides Regulate RTKs Signaling? Cells 2013, 2, 751–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindranath, M.H.; Muthugounder, S.; Presser, N. Ganglioside signatures of primary and nodal metastatic melanoma cell lines from the same patient. Melanoma Res. 2008, 18, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Cheung, N.K. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin. Ther. Targets 2015, 19, 349–362. [Google Scholar] [CrossRef]
- Yvon, E.; Del Vecchio, M.; Savoldo, B.; Hoyos, V.; Dutour, A.; Anichini, A.; Dotti, G.; Brenner, M.K. Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin. Cancer Res. 2009, 15, 5852–5860. [Google Scholar] [CrossRef] [Green Version]
- Frank, N.Y.; Margaryan, A.; Huang, Y.; Schatton, T.; Waaga-Gasser, A.M.; Gasser, M.; Sayegh, M.H.; Sadee, W.; Frank, M.H. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005, 65, 4320–4333. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, E.M.V.; Lindberg, M.F.; Jespersen, H.; Alsén, S.; Bagge, R.O.; Donia, M.; Svane, I.M.; Nilsson, O.; Ny, L.; Nilsson, L.M.; et al. HER2 CAR-T Cells Eradicate Uveal Melanoma and T-cell Therapy-Resistant Human Melanoma in IL2 Transgenic NOD/SCID IL2 Receptor Knockout Mice. Cancer Res. 2019, 79, 899–904. [Google Scholar] [CrossRef] [Green Version]
- McCarty, K.S., Jr.; Miller, L.S.; Cox, E.B.; Konrath, J.; McCarty, K.S., Sr. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch. Pathol. Lab. Med. 1985, 109, 716–721. [Google Scholar]
- Jungbluth, A.A.; Busam, K.J.; Gerald, W.L.; Stockert, E.; Coplan, K.A.; Iversen, K.; MacGregor, D.P.; Old, L.J.; Chen, Y.T. A103: An anti-melan-a monoclonal antibody for the detection of malignant melanoma in paraffin-embedded tissues. Am. J. Surg. Pathol. 1998, 22, 595–602. [Google Scholar] [CrossRef]
- Zarour, H.; De Smet, C.; Lehmann, F.; Marchand, M.; Lethé, B.; Romero, P.; Boon, T.; Renauld, J.C. The majority of autologous cytolytic T-lymphocyte clones derived from peripheral blood lymphocytes of a melanoma patient recognize an antigenic peptide derived from gene Pmel17/gp100. J. Investig. Dermatol. 1996, 107, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schank, T.E.; Hassel, J.C. Immunotherapies for the Treatment of Uveal Melanoma-History and Future. Cancers (Basel) 2019, 11, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Ji, Q.; Feigenbaum, L.; Leighty, R.M.; Hurwitz, A.A. Melanoma progression despite infiltration by in vivo-primed TRP-2-specific T cells. J. Immunother. 2009, 32, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umano, Y.; Tsunoda, T.; Tanaka, H.; Matsuda, K.; Yamaue, H.; Tanimura, H. Generation of cytotoxic T cell responses to an HLA-A24 restricted epitope peptide derived from wild-type p53. Br. J. Cancer 2001, 84, 1052–1057. [Google Scholar] [CrossRef] [Green Version]
- Eura, M.; Chikamatsu, K.; Katsura, F.; Obata, A.; Sobao, Y.; Takiguchi, M.; Song, Y.; Appella, E.; Whiteside, T.L.; DeLeo, A.B. A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck. Clin. Cancer Res. 2000, 6, 979–986. [Google Scholar] [PubMed]
- Barfoed, A.M.; Petersen, T.R.; Kirkin, A.F.; Thor Straten, P.; Claesson, M.H.; Zeuthen, J. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand. J. Immunol. 2000, 51, 128–133. [Google Scholar] [CrossRef]
- Monti, P.; Menichini, P.; Speciale, A.; Cutrona, G.; Fais, F.; Taiana, E.; Neri, A.; Bomben, R.; Gentile, M.; Gattei, V.; et al. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front. Oncol. 2020, 10, 593383. [Google Scholar] [CrossRef]
- Yu, J.; Wu, X.; Yan, J.; Yu, H.; Xu, L.; Chi, Z.; Sheng, X.; Si, L.; Cui, C.; Dai, J.; et al. Anti-GD2/4-1BB chimeric antigen receptor T cell therapy for the treatment of Chinese melanoma patients. J. Hematol. Oncol. 2018, 11, 1. [Google Scholar] [CrossRef]
- Cheung, N.K.; Lazarus, H.; Miraldi, F.D.; Abramowsky, C.R.; Kallick, S.; Saarinen, U.M.; Spitzer, T.; Strandjord, S.E.; Coccia, P.F.; Berger, N.A. Ganglioside GD2 specific monoclonal antibody 3F8: A phase I study in patients with neuroblastoma and malignant melanoma. J. Clin. Oncol. 1987, 5, 1430–1440. [Google Scholar] [CrossRef]
- Louis, C.U.; Savoldo, B.; Dotti, G.; Pule, M.; Yvon, E.; Myers, G.D.; Rossig, C.; Russell, H.V.; Diouf, O.; Liu, E.; et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011, 118, 6050–6056. [Google Scholar] [CrossRef] [PubMed]
- Mitwasi, N.; Feldmann, A.; Arndt, C.; Koristka, S.; Berndt, N.; Jureczek, J.; Loureiro, L.R.; Bergmann, R.; Máthé, D.; Hegedüs, N.; et al. “UniCAR”-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Sci. Rep. 2020, 10, 2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluger, H.M.; DiVito, K.; Berger, A.J.; Halaban, R.; Ariyan, S.; Camp, R.L.; Rimm, D.L. Her2/neu is not a commonly expressed therapeutic target in melanoma—A large cohort tissue microarray study. Melanoma Res. 2004, 14, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Potti, A.; Hille, R.C.; Koch, M. Immunohistochemical determination of HER-2/neu overexpression in malignant melanoma reveals no prognostic value, while c-Kit (CD117) overexpression exhibits potential therapeutic implications. J. Carcinog. 2003, 2, 8. [Google Scholar]
- Azemar, M.; Djahansouzi, S.; Jäger, E.; Solbach, C.; Schmidt, M.; Maurer, A.B.; Mross, K.; Unger, C.; von Minckwitz, G.; Dall, P.; et al. Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2. Breast Cancer Res. Treat. 2003, 82, 155–164. [Google Scholar] [CrossRef]
- Azemar, M.; Schmidt, M.; Arlt, F.; Kennel, P.; Brandt, B.; Papadimitriou, A.; Groner, B.; Wels, W. Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit the in vitro growth of human head and neck cancer cells and cause rapid tumor regression in vivo. Int. J. Cancer 2000, 86, 269–275. [Google Scholar] [CrossRef]
All (n = 168) | TRP2 (n = 141) | ABCB5 (n = 137) | P53 (n = 139) | gp100 (n = 138) | GD2 (n = 139) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(n) | Low (n) | High (n) | Low (n) | High (n) | Low (n) | High (n) | Low (n) | High (n) | Low (n) | High (n) | |
Age | |||||||||||
<67 | 44% (74) | 21% (30) | 23% (33) | 37% (50) | 9% (12) | 29% (40) | 16% (22) | 20% (17) | 25% (34) | 26% (36) | 19% (27) |
>67 | 56% (94) | 28% (40) | 27% (38) | 47% (64) | 8% (11) | 34% (47) | 22% (30) | 20% (17) | 36% (50) | 37% (51) | 18% (25) |
Gender | |||||||||||
Male | 58% (98) | 28% (40) | 29% (41) | 49% (67) | 9% (12) | 33% (46) | 24% (33) | 23% (31) | 35% (48) | 36% (50) | 21% (29) |
Female | 42% (70) | 21% (30) | 21% (30) | 34% (47) | 8% (11) | 30% (41) | 14% (19) | 17% (23) | 26% (36) | 27% (37) | 17% (23) |
Tumor Stage | |||||||||||
I + II | 58% (98) | 21% (30) | 33% (47) | 43% (59) | 11% (15) | 35% (49) | 19% (26) | 20% (27) | 35% (48) | 34% (47) | 21% (29) |
III + IV | 42% (70) | 28% (40) | 17% (24) | 40% (55) | 6% (8) | 27% (38) | 19% (26) | 20% (27) | 26% (36) | 29% (40) | 17% (23) |
Tumor Thickness | |||||||||||
<1.5 mm | 46% (77) | 16% (23) | 29% (41) | 33% (45) | 12% (16) | 31% (43) | 14% (19) | 18% (25) | 28% (38) | 27% (38) | 19% (26) |
>1.5 mm | 47% (79) | 27% (38) | 20% (28) | 42% (58) | 5% (7) | 27% (38) | 20% (28) | 16% (22) | 30% (42) | 30% (41) | 17% (23) |
missing | 7% (12) | 6% (9) | 1% (2) | 8% (11) | 0% (0) | 4% (6) | 4% (5) | 5% (7) | 3% (4) | 6% (8) | 2% (3) |
Ulceration | |||||||||||
yes | 29% (49) | 16% (22) | 14% (19) | 25% (34) | 4% (6) | 16% (22) | 14% (19) | 8% (11) | 21% (29) | 16% (22) | 22% (30) |
no | 62% (104) | 26% (37) | 35% (49) | 48% (66) | 12% (17) | 42% (58) | 19% (26) | 25% (34) | 36% (50) | 40% (55) | 13% (18) |
missing | 9% (15) | 8% (11) | 2% (3) | 10% (14) | 0% (0) | 5% (7) | 5% (7) | 7% (9) | 4% (5) | 7% (10) | 3% (4) |
BRAF V600 E/K | |||||||||||
yes | 17% (28) | 12% (17) | 6% (9) | 15% (21) | 3% (4) | 12% (16) | 7% (10) | 9% (13) | 9% (13) | 12% (17) | 9% (13) |
no | 25% (43) | 14% (20) | 13% (18) | 25% (34) | 3% (4) | 15% (21) | 12% (17) | 11% (15) | 16% (22) | 17% (23) | 7% (9) |
missing | 58% (97) | 23% (33) | 31% (44) | 43% (59) | 11% (15) | 36% (50) | 18% (25) | 19% (26) | 36% (49) | 34% (47) | 22% (30) |
LDH | |||||||||||
normal | 70% (117) | 38% (53) | 32% (45) | 58% (79) | 13% (18) | 42% (59) | 27% (37) | 28% (38) | 42% (58) | 45% (62) | 25% (34) |
elevated | 14% (24) | 9% (12) | 6% (9) | 12% (17) | 2% (3) | 9% (13) | 6% (8) | 6% (8) | 9% (12) | 9% (13) | 6% (8) |
missing | 16% (27) | 4% (5) | 12% (17) | 12% (17) | 2% (3) | 11% (15) | 5% (7) | 6% (8) | 10% (14) | 9% (12) | 7% (10) |
S100 | |||||||||||
normal | 74% (125) | 33% (47) | 41% (58) | 61% (84) | 13% (18) | 48% (66) | 28% (39) | 29% (40) | 46% (64) | 45% (63) | 29% (40) |
elevated | 20% (34) | 13% (18) | 9% (12) | 20% (27) | 2% (2) | 12% (17) | 9% (12) | 8% (11) | 12% (17) | 15% (21) | 7% (9) |
missing | 6% (9) | 4% (5) | 1% (1) | 2% (3) | 2% (3) | 3% (4) | 1 (1%) | 2% (3) | 2% (3) | 2% (3) | 2% (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strobel, S.B.; Machiraju, D.; Hülsmeyer, I.; Becker, J.C.; Paschen, A.; Jäger, D.; Wels, W.S.; Bachmann, M.; Hassel, J.C. Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells. Life 2021, 11, 269. https://doi.org/10.3390/life11040269
Strobel SB, Machiraju D, Hülsmeyer I, Becker JC, Paschen A, Jäger D, Wels WS, Bachmann M, Hassel JC. Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells. Life. 2021; 11(4):269. https://doi.org/10.3390/life11040269
Chicago/Turabian StyleStrobel, Sophia B., Devayani Machiraju, Ingrid Hülsmeyer, Jürgen C. Becker, Annette Paschen, Dirk Jäger, Winfried S. Wels, Michael Bachmann, and Jessica C. Hassel. 2021. "Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells" Life 11, no. 4: 269. https://doi.org/10.3390/life11040269
APA StyleStrobel, S. B., Machiraju, D., Hülsmeyer, I., Becker, J. C., Paschen, A., Jäger, D., Wels, W. S., Bachmann, M., & Hassel, J. C. (2021). Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells. Life, 11(4), 269. https://doi.org/10.3390/life11040269