Definition of Sarcopenia in Chronic Liver Disease
Abstract
:1. Introduction
2. Consensus Definition of Sarcopenia
3. Muscle Mass Measurement
3.1. Skeletal Muscle Measurement by CT
3.2. Psoas Muscle Measurement by CT
3.3. Dual Energy X-ray Absorptiometry (DXA)
Modality | Author (Year) | Country | Number of Subjects | Study Population | Measurement Method | Cutoff for Sarcopenia | Method of Determining Cutoff |
---|---|---|---|---|---|---|---|
DXA | Giusto (2015) [45] | Italy | 139 | LT candidates | ASMI | 7.26 kg/m2 for men 5.45 kg/m2 for women | Baumgartner [30] (2 SD below the sex-specific mean value) |
Bering (2018) [73] | Brazil | 104 | Chronic hepatitis C | ASMI | 7.26 kg/m2 for men 5.45 kg/m2 for women | EWGSOP1 | |
Belarmino (2018) [74] | Brazil | 144 | Male cirrhotic patients with ascites | ASMI | 7.26 kg/m2 | EWGSOP1 | |
Alferink (2019) [75] | Netherland | 4609 | Participants from The Rotterdam Study | ASMI | 7.25 kg/m2 for men 5.67 kg/m2 for women | EWGSOP1 | |
Sinclair (2019) [68] | Australia | 420 | Male advanced cirrhosis patients | (1) ASMI (2) Upper limb muscle | (1) 7.26 kg/m2 (2) 1.6 kg/m2 | (1) Baumgartner [30] (2) Mortality-based | |
Lindqvist (2019) [66] | Sweden | 53 | LT recipients | ASMI | 7.59 kg/m2 for men 5.47 kg/m2 for women | Coin (1 SD below the mean in the young population) [67] | |
Lee (2016) [18] | Korea | 2761 | NAFLD subjects defined by NAFLD liver fat score | ASM/BMI | 0.789 for men 0.521 for women | FNIH | |
Han (2020) [70] | Korea | 7191 | NAFLD subjects defined by NAFLD prediction models | ASM/BMI | 0.882 for men 0.582 for women | Lowest quintile | |
Golabi (2020) [71] | USA | 4611 | NAFLD subjects defined by fatty liver index | ASM/BMI | 0.789 for men 0.521 for women | FNIH | |
Santos (2021) [72] | Brazil | 210 | Cirrhotic patients | Upper limb muscle/height2 | 2.104 for men 1.506 for women | ROC curve for mortality | |
BIA | Nishikawa (2017) [76] | Japan | 382 | Liver cirrhosis | ASMI | 7.0 kg/m2 for men 5.7 kg/m2 for women | AWGS and JSH definition |
Hanai (2017) [77] | Japan | 120 | Liver cirrhosis | ASMI | 7.0 kg/m2 for men 5.7 kg/m2 for women | AWGS and JSH definition | |
Hayashi (2018) [78] | Japan | 112 | Chronic liver disease | ASMI | 7.0 kg/m2 for men 5.7 kg/m2 for women | AWGS and JSH definition | |
Kim (2020) [79] | Korea | 2168 | Chronic liver disease who underwent transient elastography | ASM/BMI | 0.789 for men 0.521 for women | FNIH | |
Seo (2020) [80] | Korea | 4210 | Men with Type 2 DM | (ASM/body weight) × 100 ASM/BMI | 29.0% for men 22.9% for women 0.789 for men 0.521 for women | 2 SD below the sex-specific means for in healthy young adults FNIH | |
Petta (2017) [81] | Italy | 225 | NAFLD | (ASM/body weight) × 100 | 37% for men 28% for women | Janssen |
3.4. Bioelectrical Impedance Analysis (BIA)
4. Muscle Strength and Physical Performance
4.1. Handgrip Strength (HGS)
4.2. Chair Stand Test
4.3. Gait Speed
5. Considerations for the Diagnosis of Sarcopenia and Future Prospects in Patients with Chronic Liver Disease
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Landi, F.; Topinková, E.; Michel, J.-P. Understanding sarcopenia as a geriatric syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gava, P.; Giuriati, W.; Ravara, B. Gender difference of aging performance decay rate in normalized Masters World Records of Athletics: Much less than expected. Eur. J. Transl. Myol. 2020, 30, 103–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šarabon, N.; Kozinc, Ž.; Löfler, S.; Hofer, C. Resistance Exercise, Electrical Muscle Stimulation, and Whole-Body Vibration in Older Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 2902. [Google Scholar] [CrossRef]
- Patel, D.I.; Abuchowski, K.; Sheikh, B.; Rivas, P.; Musi, N.; Kumar, A.P. Exercise preserves muscle mass and force in a prostate cancer mouse model. Eur. J. Transl. Myol. 2019, 29, 8520. [Google Scholar] [CrossRef]
- Coletti, D. Chemotherapy-induced muscle wasting: An update. Eur. J. Transl. Myol. 2018, 28, 7587. [Google Scholar] [CrossRef] [Green Version]
- Dasarathy, S.; Merli, M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016, 65, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Jindal, A.; Jagdish, R.K. Sarcopenia: Ammonia metabolism and hepatic encephalopathy. Clin. Mol. Hepatol. 2019, 25, 270–279. [Google Scholar] [CrossRef]
- Huisman, E.J.; Trip, E.J.; Siersema, P.D.; Van Hoek, B.; Van Erpecum, K.J. Protein energy malnutrition predicts complications in liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 2011, 23, 982–989. [Google Scholar] [CrossRef]
- Merli, M.; Lucidi, C.; Giannelli, V.; Giusto, M.; Riggio, O.; Falcone, M.; Ridola, L.; Attili, A.F.; Venditti, M. Cirrhotic Patients Are at Risk for Health Care–Associated Bacterial Infections. Clin. Gastroenterol. Hepatol. 2010, 8, 979–985.e1. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.; Giusto, M.; Lucidi, C.; Giannelli, V.; Pentassuglio, I.; Di Gregorio, V.; Lattanzi, B.; Riggio, O. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: Results of a prospective study. Metab. Brain Dis. 2013, 28, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Montano–Loza, A.J.; Meza–Junco, J.; Prado, C.M.; Lieffers, J.R.; Baracos, V.E.; Bain, V.G.; Sawyer, M.B. Muscle Wasting Is Associated with Mortality in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2012, 10, 166–173.e1. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Kim, M.Y.; Sohn, J.H.; Kim, S.M.; Ryu, J.A.; Lim, S.; Kim, Y. Sarcopenia as a Useful Predictor for Long-Term Mortality in Cirrhotic Patients with Ascites. J. Korean Med. Sci. 2014, 29, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Merli, M.; Berzigotti, A.; Zelber-Sagi, S.; Dasarathy, S.; Montagnese, S.; Genton, L.; Plauth, M.; Parés, A. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 172–193. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, S.C.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Plauth, M. ESPEN practical guideline: Clinical nutrition in liver disease. Clin. Nutr. 2020, 39, 3533–3562. [Google Scholar] [CrossRef]
- Lim, S.; Kim, J.H.; Yoon, J.W.; Kang, S.M.; Choi, S.H.; Park, Y.J.; Kim, K.W.; Lim, J.Y.; Park, K.S.; Jang, H.C. Sarcopenic Obesity: Prevalence and Association with Metabolic Syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 2010, 33, 1652–1654. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Kim, S.U.; Song, K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, B.-W.; Kang, E.S.; Cha, B.-S.; Han, K.-H. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008–2011). Hepatology 2016, 63, 776–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, E.; Lee, Y.-H.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, B.-W.; Kang, E.S.; Cha, B.-S.; Han, K.-H.; et al. Sarcopenia is associated with the risk of significant liver fibrosis in metabolically unhealthy subjects with chronic hepatitis B. Aliment. Pharmacol. Ther. 2018, 48, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Hsu, P.-S.; Krairit, O.; Lee, J.S.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Saeki, C.; Takano, K.; Oikawa, T.; Aoki, Y.; Kanai, T.; Takakura, K.; Nakano, M.; Torisu, Y.; Sasaki, N.; Abo, M.; et al. Comparative assessment of sarcopenia using the JSH, AWGS, and EWGSOP2 criteria and the relationship between sarcopenia, osteoporosis, and osteosarcopenia in patients with liver cirrhosis. BMC Musculoskelet. Disord. 2019, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Traub, J.; Bergheim, I.; Eibisberger, M.; Stadlbauer, V. Sarcopenia and Liver Cirrhosis—Comparison of the European Working Group on Sarcopenia Criteria 2010 and 2019. Nutrients 2020, 12, 547. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Beaudart, C.; McCloskey, E.; Bruyere, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; De Carvalho, I.A.; Thiyagarajan, J.A.; Bautmans, I.; Bertière, M.-C.; et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [Green Version]
- Mitsiopoulos, N.; Baumgartner, R.N.; Heymsfield, S.B.; Lyons, W.; Gallagher, D.; Ross, R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. 1998, 85, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of Sarcopenia among the Elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Acosta, L.F.; Galuppo, R.; García, C.R.; Villacorta, E.; Dugan, A.; Castellanos, A.L.; Gedaly, R.; Lee, J.T. Association Between Sarcopenia and AFP Level in Patients Undergoing Liver Transplantation for Hepatocellular Carcinoma. J. Surg. Res. 2019, 238, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.H.; Kim, M.Y.; Seo, Y.S.; Kim, S.G.; Lee, H.A.; Kim, T.H.; Jung, Y.K.; Kandemir, A.; Kim, J.H.; An, H.; et al. Clinical usefulness of psoas muscle thickness for the diagnosis of sarcopenia in patients with liver cirrhosis. Clin. Mol. Hepatol. 2018, 24, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, M.; Grossmann, M.; Angus, P.W.; Hoermann, R.; Hey, P.; Scodellaro, T.; Gow, P.J. Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J. Gastroenterol. Hepatol. 2015, 31, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Benjamin, J.; Shasthry, V.; Bharathy, K.G.S.; Sinha, P.K.; Kumar, G.; Pamecha, V. Sarcopenia in Cirrhosis: Fallout on Liver Transplantation. J. Clin. Exp. Hepatol. 2020, 10, 467–476. [Google Scholar] [CrossRef]
- Paternostro, R.; Lampichler, K.; Bardach, C.; Asenbaum, U.; Landler, C.; Bauer, D.; Mandorfer, M.; Schwarzer, R.; Trauner, M.; Reiberger, T.; et al. The value of different CT-based methods for diagnosing low muscle mass and predicting mortality in patients with cirrhosis. Liver Int. 2019, 39, 2374–2385. [Google Scholar] [CrossRef] [Green Version]
- DiMartini, A.; Cruz, R.J.; Dew, M.A.; Myaskovsky, L.; Goodpaster, B.; Fox, K.; Kim, K.H.; Fontes, P. Muscle mass predicts outcomes following liver transplantation. Liver Transplant. 2013, 19, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- van Vugt, J.L.A.; Alferink, L.J.M.; Buettner, S.; Gaspersz, M.P.; Bot, D.; Murad, S.D.; Feshtali, S.; van Ooijen, P.M.A.; Polak, W.G.; Porte, R.J.; et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: A competing risk analysis in a national cohort. J. Hepatol. 2018, 68, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J.; Meza-Junco, J.; Baracos, V.E.; Prado, C.M.M.; Ma, M.; Meeberg, G.; Beaumont, C.; Tandon, P.; Esfandiari, N.; Sawyer, M.B.; et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transplant. 2014, 20, 640–648. [Google Scholar] [CrossRef]
- Carey, E.J.; Lai, J.C.; Wang, C.W.; Dasarathy, S.; Lobach, I.; Montano-Loza, A.J.; Dunn, M.A. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transplant. 2017, 23, 625–633. [Google Scholar] [CrossRef]
- Kappus, M.R.; Wegermann, K.; Bozdogan, E.; Patel, Y.A.; Janas, G.; Shropshire, E.; Parish, A.; Niedzwiecki, D.; Muir, A.J.; Bashir, M. Use of Skeletal Muscle Index as a Predictor of Wait-List Mortality in Patients with End-Stage Liver Disease. Liver Transplant. 2020, 26, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Bhanji, R.A.; Dunichand-Hoedl, A.R.; Mazurak, V.C.; Baracos, V.E.; Montano-Loza, A.J. Sarcopenia Severity Based on Computed Tomography Image Analysis in Patients with Cirrhosis. Nutrients 2020, 12, 3463. [Google Scholar] [CrossRef]
- Tandon, P.; Ney, M.; Irwin, I.; Ma, M.M.; Gramlich, L.; Bain, V.G.; Esfandiari, N.; Baracos, V.; Montano-Loza, A.J.; Myers, R.P. Severe muscle depletion in patients on the liver transplant wait list: Its prevalence and independent prognostic value. Liver Transplant. 2012, 18, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Giusto, M.; Lattanzi, B.; Albanese, C.; Galtieri, A.; Farcomeni, A.; Giannelli, V.; Lucidi, C.; Di Martino, M.; Catalano, C.; Merli, M. Sarcopenia in liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 2015, 27, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Hanai, T.; Shiraki, M.; Nishimura, K.; Ohnishi, S.; Imai, K.; Suetsugu, A.; Takai, K.; Shimizu, M.; Moriwaki, H. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015, 31, 193–199. [Google Scholar] [CrossRef]
- Ebadi, M.; Tandon, P.; Moctezuma-Velazquez, C.; Ghosh, S.; Baracos, V.E.; Mazurak, V.C.; Montano-Loza, A.J. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J. Hepatol. 2018, 69, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Eslamparast, T.; Montano-Loza, A.J.; Raman, M.; Tandon, P. Sarcopenic obesity in cirrhosis-The confluence of 2 prognostic titans. Liver Int. 2018, 38, 1706–1717. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, P.; Kern, H.; Carraro, U.; Ingvarsson, P.; Knútsdóttir, S.; Gudmundsdóttir, V.; Yngvason, S.; Vatnsdal, B.; Helgason, T. Quantitative color three-dimensional computer tomography imaging of human long-term denervated muscle. Neurol. Res. 2010, 32, 13–19. [Google Scholar] [CrossRef]
- Edmunds, K.J.; Gíslason, M.K.; Arnadottir, I.D.; Marcante, A.; Piccione, F.; Gargiulo, P. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment. Eur. J. Transl. Myol. 2016, 26, 6015. [Google Scholar] [CrossRef]
- Wells, C.I.; McCall, J.L.; Plank, L.D. Relationship Between Total Body Protein and Cross-Sectional Skeletal Muscle Area in Liver Cirrhosis Is Influenced by Overhydration. Liver Transplant. 2019, 25, 45–55. [Google Scholar] [CrossRef]
- Durand, F.; Buyse, S.; Francoz, C.; Laouénan, C.; Bruno, O.; Belghiti, J.; Moreau, R.; Vilgrain, V.; Valla, D. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J. Hepatol. 2014, 60, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Latournerie, M.; DeBry, P.H.; Jezequel, C.; Legros, L.; Rayar, M.; Boudjema, K.; Guyader, D.; Jacquet, E.B.; Thibault, R. The psoas muscle transversal diameter predicts mortality in patients with cirrhosis on a waiting list for liver transplantation: A retrospective cohort study. Nutrition 2018, 51–52, 73–79. [Google Scholar] [CrossRef]
- Golse, N.; Bucur, P.O.; Ciacio, O.; Pittau, G.; Cunha, A.S.; Adam, R.; Castaing, D.; Antonini, T.; Coilly, A.; Samuel, D.; et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. Liver Transplant. 2017, 23, 143–154. [Google Scholar] [CrossRef]
- Englesbe, M.J.; Patel, S.P.; He, K.; Lynch, R.J.; Schaubel, D.E.; Harbaugh, C.; Holcombe, S.A.; Wang, S.C.; Segev, D.L.; Sonnenday, C.J. Sarcopenia and Mortality after Liver Transplantation. J. Am. Coll. Surg. 2010, 211, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Fujimoto, Y.; Ogawa, K.; Mori, A.; Hammad, A.; Tamai, Y.; Inagaki, N.; Uemoto, S. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transplant. 2014, 20, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Wang, C.W.; Lai, J.C.; Dasarathy, S.; Kappus, M.R.; Dunn, M.A.; Carey, E.J.; Montano-Loza, A.J. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J. Cachex Sarcopenia Muscle 2018, 9, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Krell, R.W.; Kaul, D.R.; Martin, A.R.; Englesbe, M.J.; Sonnenday, C.J.; Cai, S.; Malani, P.N. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transplant. 2013, 19, 1396–1402. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Deng, Y.; Wu, H.; Xu, X.; Lin, L.; Cui, B.; Zhao, T.; Fan, X.; Mao, L.; Hou, J.; et al. Low psoas muscle index associates with long-term mortality in cirrhosis: Construction of a nomogram. Ann. Transl. Med. 2020, 8, 358. [Google Scholar] [CrossRef]
- Kalafateli, M.; Mantzoukis, K.; Yau, Y.C.; Mohammad, A.O.; Arora, S.; Rodrigues, S.; De Vos, M.; Papadimitriou, K.; Thorburn, D.; O’Beirne, J.; et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J. Cachex Sarcopenia Muscle 2017, 8, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Ohara, M.; Suda, G.; Kimura, M.; Maehara, O.; Shimazaki, T.; Shigesawa, T.; Suzuki, K.; Nakamura, A.; Kawagishi, N.; Nakai, M.; et al. Analysis of the optimal psoas muscle mass index cut-off values, as measured by computed tomography, for the diagnosis of loss of skeletal muscle mass in Japanese people. Hepatol. Res. 2020, 50, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Tsien, C.; Garber, A.; Narayanan, A.; Shah, S.N.; Barnes, D.; Eghtesad, B.; Fung, J.; McCullough, A.J.; Dasarathy, S. Post-liver transplantation sarcopenia in cirrhosis: A prospective evaluation. J. Gastroenterol. Hepatol. 2014, 29, 1250–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praktiknjo, M.; Clees, C.; Pigliacelli, A.; Fischer, S.; Jansen, C.; Lehmann, J.; Pohlmann, A.; Lattanzi, B.; Krabbe, V.K.; Strassburg, C.P.; et al. Sarcopenia Is Associated with Development of Acute-on-Chronic Liver Failure in Decompensated Liver Cirrhosis Receiving Transjugular Intrahepatic Portosystemic Shunt. Clin. Transl. Gastroenterol. 2019, 10, e00025. [Google Scholar] [CrossRef] [PubMed]
- Rubbieri, G.; Mossello, E.; Di Bari, M. Techniques for the diagnosis of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Lindqvist, C.; Brismar, T.B.; Majeed, A.; Wahlin, S. Assessment of muscle mass depletion in chronic liver disease: Dual-energy x-ray absorptiometry compared with computed tomography. Nutrition 2019, 61, 93–98. [Google Scholar] [CrossRef]
- Coin, A.; Sarti, S.; Ruggiero, E.; Giannini, S.; Pedrazzoni, M.; Minisola, S.; Rossini, M.; Del Puente, A.; Inelmen, E.M.; Manzato, E.; et al. Prevalence of Sarcopenia Based on Different Diagnostic Criteria Using DEXA and Appendicular Skeletal Muscle Mass Reference Values in an Italian Population Aged 20 to 80. J. Am. Med. Dir. Assoc. 2013, 14, 507–512. [Google Scholar] [CrossRef]
- Sinclair, M.; Hoermann, R.; Peterson, A.; Testro, A.; Angus, P.W.; Hey, P.; Chapman, B.; Gow, P.J. Use of Dual X-ray Absorptiometry in men with advanced cirrhosis to predict sarcopenia-associated mortality risk. Liver Int. 2019, 39, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Lim, S.; Choi, S.H.; Kim, J.H.; Shin, C.S.; Park, K.S.; Jang, H.C. Cardiometabolic implication of sarcopenia: The Korea National Health and Nutrition Examination Study (KNHANES) 2008–2010. IJC Metab. Endocr. 2014, 4, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Han, E.; Lee, Y.-H.; Kim, Y.D.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, B.-W.; Kang, E.S.; Cha, B.-S.; et al. Nonalcoholic Fatty Liver Disease and Sarcopenia Are Independently Associated with Cardiovascular Risk. Am. J. Gastroenterol. 2020, 115, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Golabi, P.; Gerber, L.; Paik, J.M.; Deshpande, R.; De Avila, L.; Younossi, Z.M. Contribution of sarcopenia and physical inactivity to mortality in people with non-alcoholic fatty liver disease. JHEP Rep. 2020, 2, 100171. [Google Scholar] [CrossRef]
- Santos, L.A.A.; Lima, T.B.; Qi, X.; de Paiva, S.A.R.; Romeiro, F.G. Refining dual-energy x-ray absorptiometry data to predict mortality among cirrhotic outpatients: A retrospective study. Nutrition 2021, 85, 111132. [Google Scholar] [CrossRef] [PubMed]
- Bering, T.; Diniz, K.G.; Coelho, M.P.P.; Vieira, D.A.; Soares, M.M.S.; Kakehasi, A.M.; Correia, M.I.T.; Teixeira, R.; Queiroz, D.M.; Rocha, G.A.; et al. Association between pre-sarcopenia, sarcopenia, and bone mineral density in patients with chronic hepatitis C. J. Cachex Sarcopenia Muscle 2018, 9, 255–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belarmino, G.; Gonzalez, M.C.; Sala, P.; Torrinhas, R.S.; Andraus, W.; D’Albuquerque, L.A.C.; Pereira, R.M.R.; Caparbo, V.F.; Ferrioli, E.; Pfrimer, K.; et al. Diagnosing Sarcopenia in Male Patients with Cirrhosis by Dual-Energy X-Ray Absorptiometry Estimates of Appendicular Skeletal Muscle Mass. J. Parenter. Enter. Nutr. 2018, 42, 24–36. [Google Scholar] [CrossRef]
- Alferink, L.J.M.; Trajanoska, K.; Erler, N.S.; Schoufour, J.D.; De Knegt, R.J.; Ikram, M.A.; Janssen, H.L.A.; Franco, O.H.; Metselaar, H.J.; Rivadeneira, F.; et al. Nonalcoholic Fatty Liver Disease in The Rotterdam Study: About Muscle Mass, Sarcopenia, Fat Mass, and Fat Distribution. J. Bone Miner. Res. 2019, 34, 1254–1263. [Google Scholar] [CrossRef]
- Nishikawa, H.; Enomoto, H.; Iwata, Y.; Nishimura, T.; Iijima, H.; Nishiguchi, S. Clinical utility of bioimpedance analysis in liver cirrhosis. J. Hepato-Biliary-Pancreat. Sci. 2017, 24, 409–416. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Watanabe, S.; Kochi, T.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; Shimizu, M. Sarcopenia predicts minimal hepatic encephalopathy in patients with liver cirrhosis. Hepatol. Res. 2017, 47, 1359–1367. [Google Scholar] [CrossRef]
- Hayashi, M.; Abe, K.; Fujita, M.; Okai, K.; Takahashi, A.; Ohira, H. Association between sarcopenia and osteoporosis in chronic liver disease. Hepatol. Res. 2018, 48, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.-H.; Kim, S.U. Sarcopenia assessed using bioimpedance analysis is associated independently with significant liver fibrosis in patients with chronic liver diseases. Eur. J. Gastroenterol. Hepatol. 2020, 32, 58–65. [Google Scholar] [CrossRef]
- Seo, D.; Lee, Y.-H.; Park, S.W.; Choi, Y.J.; Huh, B.W.; Lee, E.; Huh, K.B.; Kim, S.; Cha, B.-S. Sarcopenia is associated with non-alcoholic fatty liver disease in men with type 2 diabetes. Diabetes Metab. 2020, 46, 362–369. [Google Scholar] [CrossRef]
- Petta, S.; Ciminnisi, S.; Di Marco, V.; Cabibi, D.; Cammà, C.; Licata, A.; Marchesini, G.; Craxì, A. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2017, 45, 510–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bera, T.K. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J. Med. Eng. 2014, 2014, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gába, A.; Kapuš, O.; Cuberek, R.; Botek, M. Comparison of multi- and single-frequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in post-menopausal women: Effects of body mass index and accelerometer-determined physical activity. J. Hum. Nutr. Diet. 2014, 28, 390–400. [Google Scholar] [CrossRef]
- Alves, F.D.; Souza, G.C.; Biolo, A.; Clausell, N. Comparison of two bioelectrical impedance devices and dual-energy X-ray absorptiometry to evaluate body composition in heart failure. J. Hum. Nutr. Diet. 2014, 27, 632–638. [Google Scholar] [CrossRef]
- Wang, H.; Hai, S.; Cao, L.; Zhou, J.; Liu, P.; Dong, B.-R. Estimation of prevalence of sarcopenia by using a new bioelectrical impedance analysis in Chinese community-dwelling elderly people. BMC Geriatr. 2016, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Shinkai, S.; Murayama, H.; Mori, S. Comparison of segmental multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body composition in a community-dwelling older population. Geriatr. Gerontol. Int. 2015, 15, 1013–1022. [Google Scholar] [CrossRef]
- Pirlich, M.; Schütz, T.; Spachos, T.; Ertl, S.; Weiß, M.-L.; Lochs, H.; Plauth, M. Bioelectrical impedance analysis is a useful bedside technique to assess malnutrition in cirrhotic patients with and without ascites. Hepatology 2000, 32, 1208–1215. [Google Scholar] [CrossRef]
- Strauss, B.G.; Gibson, P.R.; Stroud, D.B.; Borovnicar, D.J.; Xiong, D.W.; Keogh, J. The Melbourne Liver Group Total Body Dual X-ray Absorptiometry Is a Good Measure of Both Fat Mass and Fat-free Mass in Liver Cirrhosis Compared to “Gold-Standard” Techniques. Ann. N. Y. Acad. Sci. 2006, 904, 55–62. [Google Scholar] [CrossRef]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Hammad, A.; Tamai, Y.; Inagaki, N.; Uemoto, S. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition 2016, 32, 1200–1205. [Google Scholar] [CrossRef]
- Silva, D.D.E.S.; Waitzberg, D.L.; De Jesus, R.P.; De Oliveira, L.P.M.; Torrinhas, R.S.; Belarmino, G. Phase angle as a marker for sarcopenia in cirrhosis. Clin. Nutr. ESPEN 2019, 32, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Margáin, A.; Macías-Rodríguez, R.U.; Duarte-Rojo, A.; Ríos-Torres, S.L.; Espinosa-Cuevas, Á.; Torre, A. Malnutrition assessed through phase angle and its relation to prognosis in patients with compensated liver cirrhosis: A prospective cohort study. Dig. Liver Dis. 2015, 47, 309–314. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Kyle, U.G.; Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 330–339. [Google Scholar] [CrossRef]
- Ruiz-Margáin, A.; Xie, J.J.; Román-Calleja, B.M.; Pauly, M.; White, M.G.; Chapa-Ibargüengoitia, M.; Campos-Murguía, A.; González-Regueiro, J.A.; Macias-Rodríguez, R.U.; Duarte-Rojo, A. Phase Angle from Bioelectrical Impedance for the Assessment of Sarcopenia in Cirrhosis with or without Ascites. Clin. Gastroenterol. Hepatol. 2020. [Google Scholar] [CrossRef]
- Ruiz-Margáin, A.; Macías-Rodríguez, R.U.; Ampuero, J.; Cubero, F.J.; Chi-Cervera, L.; Ríos-Torres, S.L.; Duarte-Rojo, A.; Espinosa-Cuevas, A.; Romero-Gómez, M.; Torre, A. Low phase angle is associated with the development of hepatic encephalopathy in patients with cirrhosis. World J. Gastroenterol. 2016, 22, 10064–10070. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Rijk, J.M.; Roos, P.R.K.M.; Deckx, L.; Akker, M.V.D.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2015, 16, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augusti, L.; Franzoni, L.C.; Santos, L.A.A.; Lima, T.B.; Ietsugu, M.V.; Koga, K.H.; Moriguchi, S.M.; Betting, L.E.; Caramori, C.A.; Silva, G.F.; et al. Lower values of handgrip strength and adductor pollicis muscle thickness are associated with hepatic encephalopathy manifestations in cirrhotic patients. Metab. Brain Dis. 2016, 31, 909–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daphnee, D.; John, S.; Vaidya, A.; Khakhar, A.; Bhuvaneshwari, S.; Ramamurthy, A. Hand grip strength: A reliable, reproducible, cost-effective tool to assess the nutritional status and outcomes of cirrhotics awaiting liver transplant. Clin. Nutr. ESPEN 2017, 19, 49–53. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; Shimizu, M. Reduced handgrip strength is predictive of poor survival among patients with liver cirrhosis: A sex-stratified analysis. Hepatol. Res. 2019, 49, 1414–1426. [Google Scholar] [CrossRef]
- Sinclair, M.; Chapman, B.; Hoermann, R.; Angus, P.W.; Testro, A.; Scodellaro, T.; Gow, P.J. Handgrip Strength Adds More Prognostic Value to the Model for End-Stage Liver Disease Score Than Imaging-Based Measures of Muscle Mass in Men with Cirrhosis. Liver Transplant. 2019, 25, 1480–1487. [Google Scholar] [CrossRef]
- Sousa-Santos, A.R.; Amaral, T.F. Differences in handgrip strength protocols to identify sarcopenia and frailty—A systematic review. BMC Geriatr. 2017, 17, 238. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.C.; Feng, S.; Terrault, N.A.; Lizaola, B.; Hayssen, H.; Covinsky, K. Frailty Predicts Waitlist Mortality in Liver Transplant Candidates. Arab. Archaeol. Epigr. 2014, 14, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Michitaka, K.; Ueki, H.; Kaneto, M.; Aibiki, T.; Okudaira, T.; Kawakami, T.; Yamago, H.; Suga, Y.; Tomida, H.; et al. Sarcopenia and two types of presarcopenia in Japanese patients with chronic liver disease. Eur. J. Gastroenterol. Hepatol. 2016, 28, 940–947. [Google Scholar] [CrossRef]
- Wang, C.W.; Feng, S.; Covinsky, K.E.; Hayssen, H.; Zhou, L.-Q.; Yeh, B.M.; Lai, J.C. A Comparison of Muscle Function, Mass, and Quality in Liver Transplant Candidates. Transplantation 2016, 100, 1692–1698. [Google Scholar] [CrossRef] [Green Version]
- Harimoto, N.; Yoshizumi, T.; Izumi, T.; Motomura, T.; Harada, N.; Itoh, S.; Ikegami, T.; Uchiyama, H.; Soejima, Y.; Nishie, A.; et al. Clinical Outcomes of Living Liver Transplantation According to the Presence of Sarcopenia as Defined by Skeletal Muscle Mass, Hand Grip, and Gait Speed. Transplant. Proc. 2017, 49, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Covinsky, K.E.; Dodge, J.L.; Boscardin, W.J.; Segev, D.L.; Roberts, J.P.; Feng, S. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology 2017, 66, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Dodge, J.L.; Sen, S.; Covinsky, K.E.; Feng, S. Functional decline in patients with cirrhosis awaiting liver transplantation: Results from the functional assessment in liver transplantation (FrAILT) study. Hepatology 2016, 63, 574–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, C.E.; McAdams-DeMarco, M.; Verna, E.C.; Rahimi, R.S.; Kappus, M.R.; Dunn, M.A.; Volk, M.L.; Gurakar, A.; Duarte-Rojo, A.; Ganger, D.R.; et al. Association Between Liver Transplant Wait-list Mortality and Frailty Based on Body Mass Index. JAMA Surg. 2019, 154, 1103–1109. [Google Scholar] [CrossRef]
- Tapper, E.B.; Baki, J.; Parikh, N.D.; Lok, A.S. Frailty, Psychoactive Medications, and Cognitive Dysfunction Are Associated With Poor Patient-Reported Outcomes in Cirrhosis. Hepatology 2019, 69, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.S.; Saggar, K.; Goyal, O.; Varshney, T.; Kishore, H.; Bansal, N.; Sidhu, S.S. Muscle strength and physical performance, rather than muscle mass, correlate with mortality in end-stage liver disease. Eur. J. Gastroenterol. Hepatol. 2021, 33, 555–564. [Google Scholar] [CrossRef]
- Dunn, M.A.; Josbeno, D.A.; Tevar, A.D.; Rachakonda, V.; Ganesh, S.R.; Schmotzer, A.R.; Kallenborn, E.A.; Behari, J.; Landsittel, D.P.; DiMartini, A.F.; et al. Frailty as Tested by Gait Speed is an Independent Risk Factor for Cirrhosis Complications that Require Hospitalization. Am. J. Gastroenterol. 2016, 111, 1768–1775. [Google Scholar] [CrossRef]
- Kulkarni, S.; Chen, H.; Josbeno, D.; Schmotzer, A.; Hughes, C.; Humar, A.; Sood, P.; Rachakonda, V.; Dunn, M.; Tevar, A. Gait Speed and Grip Strength Are Associated with Dropping Out of the Liver Transplant Waiting List. Transplant. Proc. 2019, 51, 794–797. [Google Scholar] [CrossRef]
- Deng, Y.; Lin, L.; Fan, X.; Cui, B.; Hou, L.; Zhao, T.; Hou, J.; Mao, L.; Wang, X.; Zhao, W.; et al. Incorporation of frailty estimated by gait speed within MELD-Na and the predictive potential for mortality in cirrhosis. Ther. Adv. Chronic Dis. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Soto, R.; Díaz, L.A.; Rivas, V.; Fuentes-López, E.; Zalaquett, M.; Bruera, M.J.; González, C.; Mezzano, G.; Benítez, C. Frailty and reduced gait speed are independently related to mortality of cirrhotic patients in long-term follow-up. Ann. Hepatol. 2021, 25, 100327. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Yoh, K.; Enomoto, H.; Iwata, Y.; Sakai, Y.; Kishino, K.; Shimono, Y.; Ikeda, N.; Takashima, T.; Aizawa, N.; et al. Health-Related Quality of Life and Frailty in Chronic Liver Diseases. Life 2020, 10, 76. [Google Scholar] [CrossRef]
- Nishikawa, H.; Enomoto, H.; Yoh, K.; Iwata, Y.; Sakai, Y.; Kishino, K.; Ikeda, N.; Takashima, T.; Aizawa, N.; Takata, R.; et al. Walking Speed: Japanese Data in Chronic Liver Diseases. J. Clin. Med. 2020, 9, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author (Year) | Country | Number of Subjects | Study Population | Level of Measurement | Cutoff for Sarcopenia |
---|---|---|---|---|---|
Montano-Loza (2012) [13] | Canada | 112 | LT candidates | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Tandon (2012) [44] | Canada | 142 | LT candidates | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
DiMartini (2013) [37] | U.S.A. | 338 | LT candidates | L3–4 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Giusto (2015) [45] | Italy | 59 | LT candidates | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Hanai (2015) [46] | Japan | 130 | Cirrhosis | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Sinclair (2016) [34] | Australia | 145 | Male LT candidates | L4 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Gu (2018) [33] | Korea | 653 | Cirrhosis | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Paternostro (2019) [36] | Austria | 109 | Cirrhosis | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Acosta (2019) [32] | U.S.A. | 119 | Patients who underwent LT for HCC | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Kumar (2020) [35] | India | 115 | LT recipients | L3 | 52.4 cm2/m2 for men 38.5 cm2/m2 for women |
Carey (2017) [41] | North America | 396 | LT candidates | L3 | 50 cm2/m2 for men 39 cm2/m2 for women |
Ebadi (2018) [47] | North America | 353 | LT candidates | L3 | 50 cm2/m2 for men 39 cm2/m2 for women |
Kappus (2020) [42] | U.K. | 355 | LT candidates | L3 | 50 cm2/m2 for men 39 cm2/m2 for women |
Montano-Loza (2014) [40] | Canada | 248 | LT candidates | L3 | Male 53 cm2/m2 for BMI ≥ 25 kg/m2 43 cm2/m2 for BMI < 25 kg/m2 Female 41 cm2/m2 |
van Vugt (2018) [39] | Netherland | 585 | Patients with cirrhosis listed for LT | L3 | 1. Martin et al. [38] Male 53 cm2/m2 for BMI ≥ 25 kg/m2 43 cm2/m2 for BMI < 25 kg/m2 Female 41 cm2/m2 2. Carey et al. [41] 50 cm2/m2 for men 39 cm2/m2 for women |
Nishikawa (2016) [26] | Japan | 149 | Chronic liver disease | L3 | 42 cm2/m2 for men 38 cm2/m2 for women |
Ebadi (2020) [43] | Canada | 603 | Cirrhosis | L3 | 50 cm2/m2 for men 37 cm2/m2 for women |
Author (Year) | Country | Number of Subjects | Study Population | Measurement Method | Level of Measure | Cutoff for Sarcopenia | Method of Determining Cutoff |
---|---|---|---|---|---|---|---|
Englesbe (2010) [55] | USA | 163 | Cirrhosis patients undergoing LT | PMA | L4 | NR | Lowest quartiles |
Krell (2013) [58] | USA | 207 | Adult patients undergoing LT | PMA | L4 | NR | Lowest tertile |
Golse (2017) [54] | USA | 256 | Cirrhosis patients undergoing LT | PMA | L3-4 | Male: 1561 mm2 Female: 1464 mm2 | ROC curve for 1-year mortality |
Hamaguchi (2014) [56] | Japan | 200 | Adult patients undergoing LT | PMA/height2 | Umbilicus | Male: 6.868 cm2/m2 Female: 4.117 cm2/m2 | ROC curve for mortality |
Tsien (2014) [62] | USA | 53 | Adult patients undergoing LT | PMA/height2 | L4 | Age <50 years Male: 12.3 cm2/m2, Female: 10.5 cm2/m2 Age >50 years Male: 10.1 cm2/m2, Female: 10.3 cm2/m2 | Age- and sex-specific 5th percentile values |
Kalafateli (2017) [60] | UK | 232 | LT recipients | PMA/height2 | L3 | Male: 340 mm2/m2 Female: 264 mm2/m2 | Lowest sex-stratified quartiles |
Ebadi (2018) [57] | North America | 353 | Patients with cirrhosis on waiting list | PMA/height2 | L3 | Male: 5.1 cm2/m2 Female: 4.3 cm2/m2 | ROC curve for waitlist mortality |
Hou (2020) [59] | China | 251 | Cirrhotic patients | PMA/height2 | L3 | Male: 3.5 cm2/m2 Female: 2.6 cm2/m2 | ROC curve for 3-year mortality |
Ohara (2020) [61] | Japan | 318 | Chronic liver disease | PMA/height2 | L3 | (1) Male: 330 mm2/m2 Female: 169 mm2/m2 (2) Male: 374 mm2/m2 Female: 229 mm2/m2 | (1) Less than 2 SD below the mean of normal control (2) The bottom 5% or normal control |
Durand (2014) [52] | France | 562 | Patients with cirrhosis on waiting list | TPMT/height | Umbilicus | 16.8 mm/m | Youden index for waitlist mortality |
Kim (2014) [14] | Korea | 65 | Decompensated cirrhosis | TPMT/height | L3–4 or umbilicus | 14 mm/m | ROC curve for 1-year mortality |
Gu (2018) [33] | Korea | 653 | Cirrhotic patients | TPMT/height | Umbilicus | 16.8 mm/m | Previous reference |
Huguet (2018) [53] | France | 173 | Cirrhotic patients on waiting list | TPMT/height | Umbilicus | 15.2 mm/m | ROC curve for mortality |
Praktiknjo (2019) [63] | Europe | 186 | Patients with decompensated cirrhosis who underwent the TIPS | TPMT/height | Umbilicus | Male: 17.8 mm/m Female: 14.0 mm/m | ROC curve for 1-year mortality |
Author (Year) | Country | Number of Subjects | Study Population | Dynamometer | HGS Analysis | Hand | Position | Repetitions | Cutoff for Sarcopenia | Method of Determining Cutoff |
---|---|---|---|---|---|---|---|---|---|---|
Lai (2014) [105] | USA | 294 | LT candidate | NR | Highest value | Dominant | NR | 3 | Cutoff according to sex and BMI | EWGSOP1 (Fried) |
Augusti (2016) [100] | Brazil | 54 | Cirrhosis | Saehan dynamometer | Highest value | Nondominant | Sitting | 3 | 20.5 kg | ROC curve analysis for discriminating hepatic encephalopathy |
Hiraoka (2016) [106] | Japan | 807 | Chronic liver disease | TL110 (Toei Light Co.) | Mean of the best value of both hand | Both | Standing | A few measurements | 26 kg for men 18 kg for women | AWGS definition (2014) |
Wang (2016) [107] | USA | 292 | Adults listed for LT | Jamar hydraulic dynamometer | Mean value | Dominant | NR | 3 | Cutoff according to sex and BMI | EWGSOP1 (Fried) |
Belarmino (2017) [74] | Brazil | 144 | Male patients with cirrhosis | Digital dynamometer (Charder Co. Ltd.) | Higher value | Nondominant | NR | 3 | 30 kg for men | EWGSOP1 (Laurentani) |
Daphnee (2017) [101] | India | 180 | LT candidate | Jamar hydraulic dynamometer | Mean value | Dominant | Sitting | 3 | 19.5 kg | ROC curve analysis for discriminating survivor |
Harimoto (2017) [108] | Japan | 366 | Patients who underwent LDLT | Digital grip strength dynamometer | Higher value | NR | NR | 2 | 26 kg for men 18 kg for women | AWGS definition (2014) |
Alferink (2019) [75] | Netherland | 4609 | Participants from The Rotterdam Study | Hydraulic dynamometer (Fabrication Enterprises Inc.) | Highest value | Nondominant | NR | 3 | Cutoff according to sex and BMI | EWGSOP1 (Fried) |
Hanai (2019) [102] | Japan | 563 | Cirrhosis | T.K.K5101 GRIP-D (Takei Scientific Instruments) | Mean of the highest value of both hands | Both | Standing | NR | 30 kg for men 20 kg for women | ROC curve analysis for discriminating survivor |
Sinclair (2019) [103] | Australia | 145 | Men referred for LT | Jamar hydraulic dynamometer | Mean value | Nondominant | Sitting | 3 | 30 kg for men | EWGSOP1 (Laurentani) |
Traub (2020) [24] | Austria | 114 | Cirrhosis | Jamar hydraulic dynamometer | NR | NR | NR | NR | (1) EWGSOP1 30 kg for men 20 kg for women (2) EWGSOP2 27 kg for men 16 kg for women | EWGSOP1 (Laurentani) and EWGSOP2 (Dodds) |
Author (Year) | Country | Number of Subjects | Study Population | Distance | GS Analysis | Repetitions | Cutoff for Sarcopenia | Method of Determining Cutoff |
---|---|---|---|---|---|---|---|---|
Harimoto (2017) [108] | Japan | 366 | Patients who underwent LDLT | 10 m | Higher value | 2 | 0.8 m/s | AWGS |
Alferink (2019) [75] | Netherland | 4609 | Participants from The Rotterdam Study | 5.79 m | NR | NR | 1. Men Height ≤ 173 cm: 0.65 m/s Height > 173 cm: 0.76 m/s 2. Women Height ≤ 159 cm: 0.65 m/s Height > 159 cm: 0.76 m/s | EWGSOP1 (Fired) |
Nishikawa (2020) [118] | Japan | 341 | Chronic liver disease | 6 m | Average value | 2 | 1.0 m/s | Japanese version of the Cardiovascular Health Study criteria |
Nishikawa (2020) [119] | Japan | 356 | Chronic liver disease | 6 m | Average value | 2 | 0.8 m/s | EWGSOP and AWGS |
Deng (2020) [116] | China | 113 | Cirrhosis | 5 m | Average value | 3 | 0.8 m/s | EWGSOP2 |
Soto (2021) [117] | Chile | 126 | Cirrhosis | 4 m | NR | NR | 0.8 m/s | EWGSOP and AWGS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.W.; Song, D.S.; Chang, U.I.; Yang, J.M. Definition of Sarcopenia in Chronic Liver Disease. Life 2021, 11, 349. https://doi.org/10.3390/life11040349
Son SW, Song DS, Chang UI, Yang JM. Definition of Sarcopenia in Chronic Liver Disease. Life. 2021; 11(4):349. https://doi.org/10.3390/life11040349
Chicago/Turabian StyleSon, Seong Wan, Do Seon Song, U Im Chang, and Jin Mo Yang. 2021. "Definition of Sarcopenia in Chronic Liver Disease" Life 11, no. 4: 349. https://doi.org/10.3390/life11040349
APA StyleSon, S. W., Song, D. S., Chang, U. I., & Yang, J. M. (2021). Definition of Sarcopenia in Chronic Liver Disease. Life, 11(4), 349. https://doi.org/10.3390/life11040349