Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta‐Analysis and Meta-Regression
Abstract
:1. Introduction
- We included 109 studies (96 in adults and 13 in children)
- We reported subgroup and meta-regression analyses in adults with OSA compared to controls on the serum and plasma levels of hs-CRP
- We reported subgroup and meta-regression analyses in adults with OSA compared to controls on the serum and plasma levels of CRP
- We reported serum and plasma levels of both hs-CRP and CRP in children with OSA, always compared to controls.
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analyses
3. Results
3.1. Study Selection
3.2. Features of the Studies
3.3. Plasma hs-CRP Levels in Adults with Obstructive Sleep Apnea
3.4. Serum hs-CRP Levels in Adults with Obstructive Sleep Apnea
3.5. Plasma CRP Levels in Adults with Obstructive Sleep Apnea
3.6. Serum CRP Levels in Adults with Obstructive Sleep Apnea
3.7. Plasma and Serum Levels of hs-CRP and CRP in Children with Obstructive Sleep Apnea
3.8. Subgroup Analysis of Blood hs-CRP Levels in Adults with Obstructive Sleep Apnea
3.8.1. Ethnicity
3.8.2. Mean BMI of Participants
3.8.3. Total Number of Participants
3.8.4. Mean AHI of Participants with Obstructive Sleep Apnea
3.9. Subgroup Analysis of Blood CRP Levels in Adults with Obstructive Sleep Apnea
3.9.1. Ethnicity
3.9.2. Mean BMI
3.9.3. Total Number of Participants
3.9.4. Mean AHI of Participants with Obstructive Sleep Apnea
3.10. Meta-Regression Analysis of Blood hs-CRP Levels in Adults with Obstructive Sleep Apnea
3.11. Meta-Regression Analysis of Blood CRP Levels in Adults with Obstructive Sleep Apnea
3.12. Quality Scores
3.13. Sensitivity Analysis
3.14. Publication Bias of Blood hs-CRP and CRP Levels in Adults with Obstructive Sleep Apnea
4. Discussion
- serum and plasma hs-CRP levels and serum CRP levels in adults were significantly higher in individuals with OSA than in controls.
- there was no significant difference in adults with OSA compared to controls for plasma levels of CRP.
- in children, just plasma hs-CRP levels were significantly higher in pediatric individuals with OSA, compared to controls.
- based on subgroup analysis for the plasma and serum levels of hs-CRP, ethnicity and mean BMI in individuals with OSA could impact on the results of plasma hs-CRP levels, and ethnicity on serum levels of hs-CRP.
- based on subgroup analysis for the plasma and serum levels of CRP, number of participants and mean AHI in individuals with OSA could impact on plasma CRP levels, and ethnicity on serum levels of CRP.
- based on meta-regression on the plasma and serum levels of hs-CRP and CRP, just mean AHI of individuals with OSA could be an interfering factor on the results of serum levels of hs-CRP.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.G.; Ramar, K.; Olson, E.J. Updates on Definition, Consequences, and Management of Obstructive Sleep Apnea. Mayo Clin. Proc. 2011, 86, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, D.C.; Pack, A.I. Obstructive Sleep Apnea: Update and Future. Annu. Rev. Med. 2017, 68, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.F.; Hossain, M.M.; Hura, A.; Huang, G.; McConnell, K.; Ishman, S.L. Inflammatory milieu and cardiovascular home-ostasis in children with obstructive sleep apnea. Sleep 2017, 40, zsx022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Bhattacharjee, R.; Snow, A.; Capdevila, O.S.; Kheirandish-Gozal, L.; Gozal, D. Myeloid-related protein 8/14 levels in children with obstructive sleep apnoea. Eur. Respir. J. 2010, 35, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Kapur, V.K. Obstructive sleep apnea: Diagnosis, epidemiology, and economics. Respir. Care 2010, 55, 1155–1167. [Google Scholar]
- Punjabi, N.M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 5, 136–143. [Google Scholar] [CrossRef]
- Shah, N.; Roux, F. The Relationship of Obesity and Obstructive Sleep Apnea. Clin. Chest Med. 2009, 30, 455–465. [Google Scholar] [CrossRef]
- Young, T.; Shahar, E.; Nieto, F.J.; Redline, S.; Newman, A.B.; Gottlieb, D.J.; Walsleben, J.A.; Finn, L.; Enright, P.; Samet, J.M.; et al. Predictors of sleep-disordered breathing in commu-nity-dwelling adults: The Sleep Heart Health Study. Arch. Intern. Med. 2002, 162, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, F.; Abbasi, H.; Sadeghi, M.; Imani, M.M. The effect of obstructive sleep apnea syndrome on serum S100B and NSE levels: A systematic review and meta-analysis of observational studies. BMC Pulm. Med. 2020, 20, 31. [Google Scholar] [CrossRef]
- Imani, M.; Sadeghi, M.; Khazaie, H.; Emami, M.; Bahmani, D.S.; Brand, S. Serum and Plasma Tumor Necrosis Factor Alpha Levels in Individuals with Obstructive Sleep Apnea Syndrome: A Meta-Analysis and Meta-Regression. Life 2020, 10, 87. [Google Scholar] [CrossRef]
- Moslem Imani, M.; Sadeghi, M.; Khazaie, H.; Emami, M.; Sadeghi Bahmani, D.; Brand, S. Evaluation of serum and plasma inter-leukin-6 levels in obstructive sleep apnea syndrome (OSAS): A meta-analysis and meta-regression. Front. Immunol. 2020, 11, 1343. [Google Scholar] [CrossRef]
- Castell, J.V.; Gómez-Lechón, M.J.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P.C. Acute-phase response of human hepatocytes: Regulation of acute-phase protein synthesis by interleukin-6. Hepatology 1990, 12, 1179–1186. [Google Scholar] [CrossRef]
- Kheirandish-Gozal, L.; Gozal, D. Obstructive sleep apnea and inflammation: Proof of concept based on two illustrative cyto-kines. Int. J. Mol. Sci. 2019, 20, 459. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Ryan, M.C.; Boyle, A.J. The novel role of C-reactive protein in cardiovascular disease: Risk marker or pathogen. Int. J. Cardiol. 2006, 106, 291–297. [Google Scholar] [CrossRef]
- Meier-Ewert, H.K.; Ridker, P.M.; Rifai, N.; Price, N.; Dinges, D.F.; Mullington, J.M. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin. Chem. 2001, 47, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Kent, B.D.; Ryan, S.; McNicholas, W.T. The genetics of obstructive sleep apnoea. Curr. Opin. Pulm. Med. 2010, 16, 536–542. [Google Scholar] [CrossRef]
- Dalmas, E.; Rouault, C.; Abdennour, M.; Rovere, C.; Rizkalla, S.; Bar-Hen, A.; Nahon, J.-L.; Bouillot, J.-L.; Guerre-Millo, M.; Clément, K.; et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am. J. Clin. Nutr. 2011, 94, 450–458. [Google Scholar] [CrossRef]
- Nadeem, R.; Molnar, J.; Madbouly, E.M.; Nida, M.; Aggarwal, S.; Sajid, H.; Naseem, J.; Loomba, R. Serum Inflammatory Markers in Obstructive Sleep Apnea: A Meta-Analysis. J. Clin. Sleep Med. 2013, 9, 1003–1012. [Google Scholar] [CrossRef]
- Wang, J.; Yu, W.; Gao, M.; Zhang, F.; Gu, C.; Yu, Y.; Wei, Y. Impact of Obstructive Sleep Apnea Syndrome on Endothelial Function, Arterial Stiffening, and Serum Inflammatory Markers: An Updated Meta-analysis and Metaregression of 18 Studies. J. Am. Heart Assoc. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wei, P.; Qin, Y.; Wei, Y. Is C-reactive protein a marker of obstructive sleep apnea? A meta-analysis. Medicine 2017, 96, e6850. [Google Scholar] [CrossRef]
- Van der Touw, T.; Andronicos, N.M.; Smart, N. Is C-reactive protein elevated in obstructive sleep apnea? a systematic review and meta-analysis. Biomarkers 2019, 429–435. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. Appl. Eng. Agric. 2014, 18, 727–734. [Google Scholar]
- Zintzaras, E.; Hadjigeorgiou, G.M. The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson’s disease: A meta-analysis. J. Hum. Genet. 2005, 50, 560–566. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiciuc, C.M.; Dima-Cozma, L.C.; Bercea, R.M.; Lupusoru, C.E.; Mihaescu, T.; Cozma, S.; Patacchioli, F.R. Imbalance in the diurnal salivary testosterone/cortisol ratio in men with severe obstructive sleep apnea: An observational study. Braz. J. Otorhinolaryngol. 2016, 82, 529–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsuzzaman, A.S.; Winnicki, M.; Lanfranchi, P.; Wolk, R.; Kara, T.; Accurso, V.; Somers, V.K. Elevated C-Reactive Protein in Patients with Obstructive Sleep Apnea. Circulation 2002, 105, 2462–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teramoto, S.; Yamamoto, H.; Ouchi, Y. Increased C-Reactive Protein and Increased Plasma Interleukin-6 May Synergistically Affect the Progression of Coronary Atherosclerosis in Obstructive Sleep Apnea Syndrome. Circulation 2003, 107, E40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoe, T.; Minoguchi, K.; Matsuo, H.; Oda, N.; Minoguchi, H.; Yoshino, G.; Hirano, T.; Adachi, M. Elevated Levels of C-Reactive Protein and Interleukin-6 in Patients with Obstructive Sleep Apnea Syndrome Are Decreased by Nasal Continuous Positive Airway Pressure. Circulation 2003, 107, 1129–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barceló, A.; Barbé, F.; Llompart, E.; Mayoralas, L.R.; Ladaria, A.; Bosch, M.; Agustí, A.G. Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am. J. Med. 2004, 117, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Guilleminault, C.; Kirisoglu, C.; Ohayon, M.M. C-Reactive Protein and Sleep-Disordered Breathing. Sleep 2004, 27, 1507–1517. [Google Scholar] [CrossRef]
- Minoguchi, K.; Yokoe, T.; Tazaki, T.; Minoguchi, H.; Tanaka, A.; Oda, N.; Okada, S.; Ohta, S.; Naito, H.; Adachi, M. Increased Carotid Intima-Media Thickness and Serum Inflammatory Markers in Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2005, 172, 625–630. [Google Scholar] [CrossRef]
- Can, M.; Açikgöz, Ş.; Mungan, G.; Bayraktaroğlu, T.; Koçak, E.; Güven, B.; Demirtas, S. Serum Cardiovascular Risk Factors in Obstructive Sleep Apnea. Chest 2006, 129, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Minoguchi, K.; Yokoe, T.; Tanaka, A.; Ohta, S.; Hirano, T.; Yoshino, G.; O’Donnell, C.P.; Adachi, M. Association between lipid peroxidation and inflammation in obstructive sleep apnoea. Eur. Respir. J. 2006, 28, 378–385. [Google Scholar] [CrossRef]
- Shiina, K.; Tomiyama, H.; Takata, Y.; Usui, Y.; Asano, K.; Hirayama, Y.; Nakamura, T.; Yamashina, A. Concurrent presence of metabolic syndrome in obstructive sleep apnea syndrome exacerbates the cardiovascular risk: A sleep clinic cohort study. Hypertens. Res. 2006, 29, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.; Nolan, G.M.; Hannigan, E.; Cunningham, S.; Taylor, C.; McNicholas, W.T. Cardiovascular risk markers in obstructive sleep apnoea syndrome and correlation with obesity. Thorax 2007, 62, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Yoon, I.-Y.; Shin, Y.-K.; Lee, C.H.; Kim, J.-W.; Lee, T.; Choi, D.-J.; Ahn, H.J. Endothelial Dysfunction and C-Reactive Protein in Relation with the Severity of Obstructive Sleep Apnea Syndrome. Sleep 2007, 30, 997–1001. [Google Scholar] [CrossRef] [Green Version]
- Iesato, K.; Tatsumi, K.; Saibara, T.; Nakamura, A.; Terada, J.; Tada, Y.; Sakao, S.; Tanabe, N.; Takiguchi, Y.; Kuriyama, T. Decreased Lipoprotein Lipase in Obstructive Sleep Apnea Syndrome. Circ. J. 2007, 71, 1293–1298. [Google Scholar] [CrossRef] [Green Version]
- Minoguchi, K.; Yokoe, T.; Tazaki, T.; Minoguchi, H.; Oda, N.; Tanaka, A.; Yamamoto, M.; Ohta, S.; O’Donnell, C.P.; Adachi, M. Silent brain infarction and platelet activation in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2007, 175, 612–617. [Google Scholar] [CrossRef]
- Jin, Y.; Hui, L.; Yuan, L.; Xian, L.; Zhu, J.-M. Increased serum levels of C-reactive protein and matrix metalloproteinase-9 in obstructive sleep apnea syndrome. Chin. Med. J. 2007, 120, 1482–1486. [Google Scholar]
- Kapsimalis, F.; Varouchakis, G.; Manousaki, A.; Daskas, S.; Nikita, D.; Kryger, M.; Gourgoulianis, K. Association of Sleep Apnea Severity and Obesity with Insulin Resistance, C-Reactive Protein, and Leptin Levels in Male Patients with Obstructive Sleep Apnea. Lung 2008, 186, 209–217. [Google Scholar] [CrossRef]
- Saletu, M.; Sauter, C.; Lalouschek, W.; Saletu, B.; Kapfhammer, G.; Benesch, T.; Zeitlhofer, J. Is excessive daytime sleepiness a predictor of carotid atherosclerosis in sleep apnea? Atheroscler 2008, 196, 810–816. [Google Scholar] [CrossRef]
- Sharma, S.; Mishra, H.K.; Sharma, H.; Goel, A.; Sreenivas, V.; Gulati, V.; Tahir, M. Obesity, and not obstructive sleep apnea, is responsible for increased serum hs-CRP levels in patients with sleep-disordered breathing in Delhi. Sleep Med. 2008, 9, 149–156. [Google Scholar] [CrossRef]
- Takahashi, K.-I.; Chin, K.; Nakamura, H.; Morita, S.; Sumi, K.; Oga, T.; Matsumoto, H.; Niimi, A.; Fukuhara, S.; Yodoi, J.; et al. Plasma Thioredoxin, a Novel Oxidative Stress Marker, in Patients with Obstructive Sleep Apnea Before and after Nasal Continuous Positive Airway Pressure. Antioxid. Redox Signal. 2008, 10, 715–726. [Google Scholar] [CrossRef]
- Bhushan, B.; Guleria, R.; Misra, A.; Pandey, R.M.; Luthra, K.; Vikram, N.K. Obstructive Sleep Apnoea correlates with C-reactive protein in obese Asian Indians. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 184–189. [Google Scholar] [CrossRef]
- Carneiro, G.; Togeiro, S.M.; Ribeiro-Filho, F.F.; Truksinas, E.; Ribeiro, A.B.; Zanella, M.T.; Tufik, S. Continuous Positive Airway Pressure Therapy Improves Hypoadiponectinemia in Severe Obese Men with Obstructive Sleep Apnea Without Changes in Insulin Resistance. Metab. Syndr. Relat. Disord. 2009, 7, 537–542. [Google Scholar] [CrossRef]
- Cofta, S.; Wysocka, E.; Michalak, S.; Piorunek, T.; Batura-Gabryel, H.; Torlinski, L. Endothelium-derived markers and antioxidant status in the blood of obstructive sleep apnea males. Eur. J. Med. Res. 2009, 14, 49. [Google Scholar] [CrossRef] [Green Version]
- Makino, S.; Fujiwara, M.; Suzukawa, K.; Handa, H.; Fujie, T.; Ohtaka, Y.; Komatsu, Y.; Aoki, Y.; Maruyama, H.; Terada, Y.; et al. Visceral Obesity is Associated with the Metabolic Syndrome and Elevated Plasma Retinol Binding Protein-4 Level in Obstructive Sleep Apnea Syndrome. Horm. Metab. Res. 2008, 41, 221–226. [Google Scholar] [CrossRef]
- Sahlman, J.; Miettinen, K.; Peuhkurinen, K.; Seppä, J.; Peltonen, M.; Herder, C.; Punnonen, K.; Vanninen, E.; Gylling, H.; Partinen, M.; et al. The activation of the inflammatory cytokines in overweight patients with mild obstructive sleep apnoea. J. Sleep Res. 2009, 19, 341–348. [Google Scholar] [CrossRef]
- Aihara, K.; Oga, T.; Harada, Y.; Chihara, Y.; Handa, T.; Tanizawa, K.; Watanabe, K.; Tsuboi, T.; Hitomi, T.; Mishima, M.; et al. Comparison of biomarkers of subclinical lung injury in obstructive sleep apnea. Respir. Med. 2011, 105, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Barcelo, A.; Piérola, J.; De La Peña, M.; Esquinas, C.; Fuster, A.; De La Torre, M.S.; Carrera, M.; Alonso-Fernández, A.; Ladaria, A.; Bosch, M.; et al. Free fatty acids and the metabolic syndrome in patients with obstructive sleep apnoea. Eur. Respir. J. 2010, 37, 1418–1423. [Google Scholar] [CrossRef] [Green Version]
- Basoglu, O.K.; Sarac, F.; Sarac, S.; Uluer, H.; Yilmaz, C. Metabolic syndrome, insulin resistance, fibrinogen, homocysteine, leptin, and C-reactive protein in obese patients with obstructive sleep apnea syndrome. Ann. Thorac. Med. 2011, 6, 120–125. [Google Scholar] [CrossRef]
- Fredheim, J.M.; Rollheim, J.; Omland, T.; Hofsø, D.; Røislien, J.; Vegsgaard, K.; Hjelmesæth, J. Type 2 diabetes and pre-diabetes are associated with obstructive sleep apnea in extremely obese subjects: A cross-sectional study. Cardiovasc. Diabetol. 2011, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Guasti, L.; Marino, F.; Cosentino, M.; Maroni, L.; Maresca, A.M.; Colombo, F.; Maio, R.C.; Castiglioni, L.; Saporiti, F.; Loraschi, A.; et al. Cytokine production from peripheral blood mononuclear cells and polymorphonuclear leukocytes in patients studied for suspected obstructive sleep apnea. Sleep Breath. 2009, 15, 3–11. [Google Scholar] [CrossRef]
- Kanbay, A.; Kaya, E.; Buyukoglan, H.; Ozdogan, N.; Kaya, M.G.; Oymak, F.S.; Gulmez, I.; Demir, R.; Kokturk, O. Serum gamma-glutamyl transferase activity is an independent predictor for cardiovascular disease in Obstructive Sleep Apnea Syndrome. Respir. Med. 2011, 105, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasai, T.; Inoue, K.; Kumagai, T.; Kato, M.; Kawana, F.; Sagara, M.; Ishiwata, S.; Ohno, M.; Yamaguchi, T.; Momomura, S.; et al. Plasma pentraxin3 and arterial stiffness in men with obstructive sleep apnea. Am. J. Hypertens. 2011, 24, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balci, M.M.; Arslan, U.; Firat, H.; Kocaoğlu, İ.; Vural, M.G.; Balci, K.G.; Maden, O.; Gürbüz, O.A.; Ardiç, S.; Yeter, E. Serum Levels of Adipocyte Fatty Acid–Binding Protein Are Independently Associated with Left Ventricular Mass and Myocardial Performance Index in Obstructive Sleep Apnea Syndrome. J. Investig. Med. 2012, 60, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.-Y.; Lee, P.; Tsai, Y.-F.; Yang, P.-C.; Wu, Y.-T. C-reactive protein and heart rate recovery in middle-aged men with severe obstructive sleep apnea. Sleep Breath. 2012, 16, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, P.; Zhou, C.; Jia, X.; Kang, J. Elevated levels of serum chemerin in patients with obstructive sleep apnea syndrome. Biomarkers 2012, 17, 248–253. [Google Scholar] [CrossRef]
- Fornadi, K.; Lindner, A.; Czira, M.E.; Szentkiralyi, A.; Lazar, A.S.; Zoller, R.; Turanyi, C.Z.; Veber, O.; Novak, M.; Mucsi, I.; et al. Lack of association between objectively assessed sleep disorders and inflammatory markers among kidney transplant recipients. Int. Urol. Nephrol. 2011, 44, 607–617. [Google Scholar] [CrossRef]
- Guven, S.F.; Turkkani, M.H.; Ciftci, B.; Ciftci, T.U.; Erdogan, Y. The relationship between high-sensitivity C-reactive protein levels and the severity of obstructive sleep apnea. Sleep Breath. 2012, 16, 217–221. [Google Scholar] [CrossRef]
- Panoutsopoulos, A.; Kallianos, A.; Kostopoulos, K.; Seretis, C.; Koufogiorga, E.; Protogerou, A.; Trakada, G.; Kostopoulos, C.; Zakopoulos, N.; Nikolopoulos, I. Effect of CPAP treatment on endothelial function and plasma CRP levels in patients with sleep apnea. Med. Sci. Monit. 2012, 18, CR747–CR751. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-C.; Guo, C.-H.; Tseng, C.-J.; Wang, K.-C.; Liu, P.-J. Blood trace minerals concentrations and oxidative stress in patients with obstructive sleep apnea. J. Nutr. Health Aging 2013, 17, 639–644. [Google Scholar] [CrossRef]
- Kosacka, M.; Korzeniewska, A.; Jankowska, R. The evaluation of body composition, adiponectin, C-reactive protein and cho-lesterol levels in patients with obstructive sleep apnea syndrome. Adv. Clin. Exp. Med. 2013, 22, 817–824. [Google Scholar]
- Wang, Q.; Feng, X.; Zhou, C.; Li, P.; Kang, J. Decreased levels of serum omentin-1 in patients with obstructive sleep apnoea syn-drome. Ann. Clin. Biochem. 2013, 50, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-B.; Lin, Q.-C.; Deng, C.-S.; Chen, G.-P.; Cai, Z.-M.; Chen, H. Elevated serum cystatin C in severe OSA younger men without complications. Sleep Breath. 2013, 17, 235–241. [Google Scholar] [CrossRef]
- Akilli, H.; Kayrak, M.; Bekci, T.T.; Erdogan, H.I.; Aribas, A.; Yildirim, O.; Taner, A.; Erer, M.; Ünlü, A.; Arıbas, A. Gender-Related Changes of the Epicardial Fat Thickness and Leptin in Obstructive Sleep Apnea. Echocardiography 2014, 31, 411–419. [Google Scholar] [CrossRef]
- Ciccone, M.M.; Scicchitano, P.; Zito, A.; Cortese, F.; Boninfante, B.; Falcone, V.A.; Quaranta, V.N.; Ventura, V.A.; Zucano, A.; Di Serio, F.; et al. Correlation between Inflammatory Markers of Atherosclerosis and Carotid Intima-Media Thickness in Obstructive Sleep Apnea. Molecules 2014, 19, 1651–1662. [Google Scholar] [CrossRef]
- Li, W.; Yu, Z.; Jiang, C. Association of Serum YKL-40 with the Presence and Severity of Obstructive Sleep Apnea Syndrome. Lab. Med. 2014, 45, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Niżankowska-Jędrzejczyk, A.; Almeida, F.R.; Lowe, A.A.; Kania, A.; Nastałek, P.; Mejza, F.; Foley, J.H.; Niżankowska-Mogilnicka, E.; Undas, A. Modulation of Inflammatory and Hemostatic Markers in Obstructive Sleep Apnea Patients Treated with Mandibular Advancement Splints: A Parallel, Controlled Trial. J. Clin. Sleep Med. 2014, 10, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-K.; Chen, J.-X.; Huang, Y.; Li, A.-Y. Serum S100A12 levels are associated with the presence and severity of obstructive sleep apnea syndrome in male patients. Sleep Breath. 2014, 18, 269–274. [Google Scholar] [CrossRef]
- Sökücü, S.N.; Özdemir, C.; Dalar, L.; Karasulu, L.; Aydın, Ş.; Altın, S. Complete blood count alterations after six months of con-tinuous positive airway pressure treatment in patients with severe obstructive sleep apnea. J. Clin. Sleep Med. 2014, 10, 873–878. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; France, M.; Aghamohammadzadeh, R.; Liu, Y.; Hama, S.; Kwok, S.; Schofield, J.; Turkington, P.; Syed, A.A.; Malik, R.; et al. Impairment of High-Density Lipoprotein Resistance to Lipid Peroxidation and Adipose Tissue Inflammation in Obesity Complicated by Obstructive Sleep Apnea. J. Clin. Endocrinol. Metab. 2014, 99, 3390–3398. [Google Scholar] [CrossRef] [Green Version]
- Yüksel, M.; Okur, H.K.; Pelin, Z.; Öğünç, A.V.; Öztürk, L. Arginase activity and nitric oxide levels in patients with obstructive sleep apnea syndrome. Clinics 2014, 69, 247–252. [Google Scholar] [CrossRef]
- Abakay, O.; Abakay, A.; Palanci, Y.; Yuksel, H.; Sen, H.S.; Evliyaoglu, O.; Tanrikulu, A.C. Relationship between hepcidin levels and periodic limb movement disorder in patients with obstructive sleep apnea syndrome. Sleep Breath. 2015, 19, 459–466. [Google Scholar] [CrossRef]
- Andaku, D.K.; D’Almeida, V.; Carneiro, G.; Hix, S.; Tufik, S.; Togeiro, S.M. Sleepiness, inflammation and oxidative stress markers in middle-aged males with obstructive sleep apnea without metabolic syndrome: A cross-sectional study. Respir. Res. 2015, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
- da Silva Araújo, L.; Fernandes, J.F.R.; Klein, M.R.S.T.; Sanjuliani, A.F. Obstructive sleep apnea is independently associated with inflammation and insulin resistance, but not with blood pressure, plasma catecholamines, and endothelial function in obese subjects. Nutrition 2015, 31, 1351–1357. [Google Scholar] [CrossRef]
- Asker, S.; Asker, M.; Sarikaya, E.; Sunnetcioglu, A.; Aslan, M.; Demir, H. Oxidative stress parameters and their correlation with clinical, metabolic and polysomnographic parameters in severe obstructive sleep apnea syndrome. Int. J. Clin. Exp. Med. 2015, 8, 11449–11455. [Google Scholar] [PubMed]
- Bakirci, E.M.; Unver, E.; Degirmenci, H.; Kivanc, T.; Gunay, M.; Hamur, H.; Büyüklü, M.; Ceyhun, G.; Topal, E.; Çoban, T.A. Serum YKL–40/chitinase 3–like protein 1 level is an independent predictor of atherosclerosis development in patients with obstructive sleep apnea syndrome. Arch. Turk. Soc. Cardiol. 2015, 43, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, M.; Korkmaz, H.; Küçüker, F.; Ayyıldız, S.N.; Çankaya, S. Evaluation of the association of sleep apnea-related systemic inflammation with CRP, ESR, and neutrophil-to-lymphocyte ratio. Medical science monitor. Int. Med. J. Exp. Clin. Res. 2015, 21, 477–481. [Google Scholar]
- Xu, C.-Y.; Chun-Ling, W.; Wu, C.-L.; Lou, H.-J.; Jiang, H.-W.; Ding, G.-Q. Serum sLOX-1 Levels Are Correlated with the Presence and Severity of Obstructive Sleep Apnea. Genet. Test. Mol. Biomark. 2015, 19, 272–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altintas, N.; Mutlu, L.C.; Akkoyun, D.C.; Aydin, M.; Bilir, B.; Yilmaz, A.; Malhotra, A. Effect of CPAP on New Endothelial Dysfunction Marker, Endocan, in People with Obstructive Sleep Apnea. Angiology 2015, 67, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Archontogeorgis, K.; Nena, E.; Tsigalou, C.; Voulgaris, A.; Xanthoudaki, M.; Froudarakis, M.; Steiropoulos, P. Cystatin C Levels in Middle-Aged Patients with Obstructive Sleep Apnea Syndrome. Pulm. Med. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Borratynska, A.; Stopyra-Pach, K.; Fil, K.; Undas, A. Impaired plasma clot lysis and its determinants in patients with obstructive sleep apnea syndrome. Blood Coagul. Fibrinolysis 2016, 27, 892–898. [Google Scholar] [CrossRef]
- Can, M.; Uygur, F.; Tanrıverdi, H.; Acıkgoz, B.; Alper, B.; Guven, B. Effect of continuous positive airway pressure (CPAP) therapy on IL-23 in patients with obstructive sleep apnea. Immunol. Res. 2016, 64, 1179–1184. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, P.; He, Z.; Yang, J.; Liang, C.; Ren, Y.; Wu, Z. Obstructive sleep apnea combined dyslipidemia render additive effect on increasing atherosclerotic cardiovascular diseases prevalence. Lipids Health Dis. 2016, 15, 98. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, S.J.; Choi, K.-M.; Lee, S.K.; Yoon, D.W.; Lee, S.G.; Shin, C. Obstructive sleep apnea is associated with elevated high sensitivity C-reactive protein levels independent of obesity: Korean genome and epidemiology study. PLoS ONE 2016, 11, e0163017. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.-C.; Huang, J.-C.; Lin, Q.-C.; Zhao, J.-M.; Lin, X.; Chen, L.-D.; Huang, J.-F.; Chen, X. Relationship between obstructive sleep apnea and nonalcoholic fatty liver disease in nonobese adults. Sleep Breath. 2015, 20, 529–535. [Google Scholar] [CrossRef]
- Tanriverdi, H.; Firat Uygur, M.C.; Erboy, F.; Altinsoy, B.; Örnek, T.; Köktürk, F.; Tor, M.M.; Atalay, F. Serum midkine levels in patients with obstructive sleep apnoea. Acta Med. 2016, 32, 127. [Google Scholar]
- Tie, Y.; Fu, Y.; Xu, Z.; Peng, Y. Relationship between C-reactive protein levels and obstructive sleep apnea syndrome. Genet. Mol. Res. 2016, 15, 1–5. [Google Scholar] [CrossRef]
- Vicente, E.; Marin, J.M.; Carrizo, S.J.; Osuna, C.S.; González, R.; Marin-Oto, M.; Forner, M.; Vicente, P.; Cubero, P.; Gil, A.V.; et al. Upper airway and systemic inflammation in obstructive sleep apnoea. Eur. Respir. J. 2016, 48, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Uygur, F.; Tanrıverdi, H.; Can, M.; Erboy, F.; Altınsoy, B.; Atalay, F.; Ornek, T.; Damar, M.; Kokturk, F.; Tor, M.; et al. Association between continuous positive airway pressure and circulating omentin levels in patients with obstructive sleep apnoea. Sleep Breath. 2016, 20, 939–945. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, L.; Wu, X.; Niu, Y.; Du, H. Prognostic role of advanced glycation end products in male patients with obstructive sleep apnoea syndrome and hypertension. Int. J. Clin. Exp. Med. 2016, 9, 13135–13141. [Google Scholar]
- Bouloukaki, I.; Mermigkis, C.; Tzanakis, N.; Kallergis, E.; Moniaki, V.; Mauroudi, E.; Schiza, S.E. Evaluation of Inflammatory Markers in a Large Sample of Obstructive Sleep Apnea Patients without Comorbidities. Mediat. Inflamm. 2017, 2017, 4573756. [Google Scholar] [CrossRef] [Green Version]
- Gamsiz-Isik, H.; Kiyan, E.; Bingol, Z.; Baser, U.; Ademoglu, E.; Yalcin, F. Does Obstructive Sleep Apnea Increase the Risk for Periodontal Disease? A Case-Control Study. J. Periodontol. 2017, 88, 443–449. [Google Scholar] [CrossRef]
- Karamanli, H.; Kizilirmak, D.; Akgedik, R.; Bilgi, M. Serum levels of magnesium and their relationship with CRP in patients with OSA. Sleep Breath. 2016, 21, 549–556. [Google Scholar] [CrossRef]
- Kosacka, M.; Porębska, I.; Jankowska, R. Decreased sL-selectin serum levels in sleep apnea syndrome patients with cardiovascular diseases. Adv. Clin. Exp. Med. 2017, 26, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Suliman, L.A.E.M.; Morsy, N.E.; El-Sebaie, A.H.; Omar, N.M.A.-E.; Fathy, A. Modelling obstructive sleep apnea susceptibility using non-invasive inflammatory biomarkers. Egypt. J. Chest Dis. Tuberc. 2017, 66, 657–661. [Google Scholar] [CrossRef]
- Xu, Q.; Du, J.; Ling, X.; Lu, Y. Evaluation of MIh Scoring System in Diagnosis of Obstructive Sleep Apnea Syndrome. Med. Sci. Monit. 2017, 23, 4715–4722. [Google Scholar] [CrossRef] [Green Version]
- Bozic, J.; Borovac, J.A.; Galic, T.; Kurir, T.T.; Supe-Domic, D.; Dogas, Z. Adropin and Inflammation Biomarker Levels in Male Patients with Obstructive Sleep Apnea: A Link with Glucose Metabolism and Sleep Parameters. J. Clin. Sleep Med. 2018, 14, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Bozkus, F.; Dikmen, N.; Demir, L.S.; Fulsen, B. Gamma-glutamyl transferase activity as a predictive marker for severity of obstructive sleep apnea syndrome and concomitant hypertension. Clin. Respir. J. 2018, 12, 1964–1973. [Google Scholar] [CrossRef]
- Cengiz, A.; Konuk, S.; Tuğ, T. The Relation between Pregnancy-Associated Plasma Protein A and Obstructive Sleep Apnea Syndrome. Can. Respir. J. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Horvath, P.; Tarnoki, D.L.; Tarnoki, A.D.; Karlinger, K.; Lazar, Z.; Losonczy, G.; Kunos, L.; Bikov, A. Complement system activation in obstructive sleep apnea. J. Sleep Res. 2018, 27, e12674. [Google Scholar] [CrossRef] [Green Version]
- Kunos, L.; Horvath, P.; Kis, A.; Tarnoki, D.L.; Tarnoki, A.D.; Lazar, Z.; Bikov, A. Circulating Survivin Levels in Obstructive Sleep Apnoea. Lung 2018, 196, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Ozkok, A.; Ozkok, S.; Takır, M.; Yakar, H.I.; Kanbay, A. Serum heparanase levels are associated with endothelial dysfunction in patients with obstructive sleep apnea. Clin. Respir. J. 2017, 12, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Qian, Y.; Li, Q.; Fang, S.; Yang, Z.; Tan, Y.; Gu, W. Serum Romo1 is significantly associated with disease severity in patients with obstructive sleep apnea syndrome. Sleep Breath. 2018, 22, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-M.; Pang, X.-L.; Huang, R.; Gong, F.-Y.; Zhong, X.; Xiao, Y. Adiponectin, omentin, ghrelin, and visfatin levels in obese patients with severe obstructive sleep apnea. BioMed Res. Int. 2018, 2018, 3410135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.P.; Guleria, R.; Vikram, N.K.; Gupta, A.K. Non-alcoholic fatty liver disease is an independent risk factor for inflammation in obstructive sleep apnea syndrome in obese Asian Indians. Sleep Breath. 2018, 23, 171–178. [Google Scholar] [CrossRef]
- Jung, J.H.; Park, J.W.; Kim, N.H.; Kim, S.T. The Effects of Obstructive Sleep Apnea on Risk factors for Cardiovascular diseases. Ear Nose Throat J. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Chen, Z.; Qin, Y.; Wei, Y.-X. Plasm YKL-40 Levels Are Associated with Hypertension in Patients with Obstructive Sleep Apnea. BioMed Res. Int. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Płóciniczak, A.; Baszczuk, A.; Ludziejewska, A.; Winiarska, H.; Michalak, S.; Kasprzak, G.; Formanowicz, D.; Cofta, S.; Wysocka, E. Paraoxonase 1 Gene L55M Polymorphism and Paraoxonase 1 Activity in Obstructive Sleep Apnea Patients. Adv. Exp. Med. Biol. 2018, 1150, 17–24. [Google Scholar]
- Voulgaris, A.; Archontogeorgis, K.; Nena, E.; Tsigalou, C.; Xanthoudaki, M.; Kouratzi, M.; Tripsianis, G.; Froudarakis, M.; Steiropoulos, P. Serum levels of NGAL and cystatin C as markers of early kidney dysfunction in patients with obstructive sleep apnea syndrome. Sleep Breath. 2019, 23, 161–169. [Google Scholar] [CrossRef]
- Wang, S.; Cui, H.; Zhu, C.; Wu, R.; Meng, L.; Yu, Q.; Huang, X.; Xiao, M.; Wang, S. Obstructive sleep apnea causes impairment of the carotid artery in patients with hypertrophic obstructive cardiomyopathy. Respir. Med. 2019, 150, 107–112. [Google Scholar] [CrossRef]
- Wen, W.-W.; Ning, Y.; Zhang, Q.; Yang, Y.-X.; Jia, Y.-F.; Sun, H.-L.; Qin, Y.-W.; Fang, F.; Wei, Y.-X. TNFRSF11B: A potential plasma biomarker for diagnosis of obstructive sleep apnea. Clin. Chim. Acta 2019, 490, 39–45. [Google Scholar] [CrossRef]
- Bocskei, R.M.; Meszaros, M.; Tarnoki, A.D.; Tarnoki, D.L.; Kunos, L.; Lazar, Z.; Bikov, A. Circulating Soluble Urokinase-Type Plasminogen Activator Receptor in Obstructive Sleep Apnoea. Medicine 2020, 56, 77. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.-D.; Huang, J.-F.; Huang, S.-P.; Chen, X.-F. Association of serum adiponectin level with cystatin C in male patients with obstructive sleep apnea syndrome. Sleep Breath. 2019, 24, 953–960. [Google Scholar] [CrossRef]
- Chien, M.-Y.; Lee, P.-L.; Yu, C.-W.; Wei, S.Y.; Shih, T.T.-F. Intramyocellular Lipids, Insulin Resistance, and Functional Performance in Patients with Severe Obstructive Sleep Apnea. Nat. Sci. Sleep 2020, 12, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Düger, M.; Seyhan, E.C.; Günlüoğlu, M.Z.; Bolatkale, M.; Özgül, M.A.; Turan, D.; Uğur, E.; Ülfer, G. Does ischemia-modified albumin level predict severity of obstructive sleep apnea? Sleep Breath. 2021, 25, 65–73. [Google Scholar] [CrossRef]
- Pákó, J.; Kunos, L.; Mészáros, M.; Tárnoki, D.L.; Tárnoki, Á.D.; Horváth, I.; Bikov, A. Decreased Levels of Anti-Aging Klotho in Obstructive Sleep Apnea. Rejuvenation Res. 2020, 23, 256–261. [Google Scholar] [CrossRef]
- Winiarska, H.M.; Cofta, S.; Bielawska, L.; Płóciniczak, A.; Piorunek, T.; Wysocka, E. Circulating P-Selectin and Its Glycoprotein Ligand in Nondiabetic Obstructive Sleep Apnea Patients. Adv. Exp. Med. Biol. 2020, 1279, 61–69. [Google Scholar]
- Xie, J.-Y.; Liu, W.-X.; Ji, L.; Chen, Z.; Gao, J.-M.; Chen, W.; Chen, G.-F.; Zhu, Q. Relationship between inflammatory factors and arrhythmia and heart rate variability in OSAS patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2037–2053. [Google Scholar]
- Zhang, L.; Zhang, X.; Meng, H.; Li, Y.; Han, T.; Wang, C. Obstructive sleep apnea and liver injury in severely obese patients with nonalcoholic fatty liver disease. Sleep Breath. 2020, 24, 1515–1521. [Google Scholar] [CrossRef]
- Kaditis, A.G.; Alexopoulos, E.I.; Karathanasi, A.; Ntamagka, G.; Oikonomidi, S.; Kiropoulos, T.S.; Zintzaras, E.; Gourgoulianis, K. Adiposity and low-grade systemic inflammation modulate matrix metalloproteinase-9 levels in Greek children with sleep apnea. Pediatr. Pulmonol. 2010, 45, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Kheirandish-Gozal, L.; Bhattacharjee, R.; Kim, J.; Clair, H.B.; Gozal, D. Endothelial Progenitor Cells and Vascular Dysfunction in Children with Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2010, 182, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Canapari, C.A.; Hoppin, A.G.; Kinane, T.B.; Thomas, B.J.; Torriani, M.; Katz, E.S. Relationship between Sleep Apnea, Fat Distribution, and Insulin Resistance in Obese Children. J. Clin. Sleep Med. 2011, 7, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Khalyfa, A.; Kheirandish-Gozal, L.; Capdevila, O.S.; Bhattacharjee, R.; Gozal, D. Macrophage migration inhibitory factor gene polymorphisms and plasma levels in children with obstructive sleep apnea. Pediatr. Pulmonol. 2012, 47, 1001–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Gozal, D.; Bhattacharjee, R.; Kheirandish-Gozal, L. TREM-1 and Pentraxin-3 Plasma Levels and Their Association with Obstructive Sleep Apnea, Obesity, and Endothelial Function in Children. Sleep 2013, 36, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, A.; Licenziati, M.R.; De Michele, F.; Verga, M.C.; Santoriello, C.; Di Buono, L.; Renis, M.; Lembo, L.; D’Agostino, B.; Cappetta, D.; et al. C-reactive protein and carotid inti-ma-media thickness in children with sleep disordered breathing. J. Clin. Sleep Med. 2013, 9, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Israel, L.P.; Benharoch, D.; Gopas, J.; Goldbart, A.D. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome. Sleep 2013, 36, 1947–1955. [Google Scholar] [CrossRef] [Green Version]
- Gozal, D.; Kheirandish-Gozal, L.; Carreras, A.; Khalyfa, A.; Peris, E. Obstructive Sleep Apnea and Obesity are Associated with Reduced GPR 120 Plasma Levels in Children. Sleep 2014, 37, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Kheirandish-Gozal, L.; Peris, E.; Wang, Y.; Kakazu, M.T.; Khalyfa, A.; Carreras, A.; Gozal, D. Lipopolysaccharide-Binding Protein Plasma Levels in Children: Effects of Obstructive Sleep Apnea and Obesity. J. Clin. Endocrinol. Metab. 2014, 99, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Liu, H.; Li, P.; Chen, Z.-G.; Zhang, G.-H.; Yang, Q.-T.; Li, Y. CD4+T-lymphocyte subsets in nonobese children with obstructive sleep apnea syndrome. Pediatr. Res. 2015, 78, 165–173. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Guilleminault, C.; Hwang, F.-M.; Cheng, C.; Lin, C.-H.; Li, H.-Y.; Lee, L.-A. Inflammatory cytokines in pediatric obstructive sleep apnea. Medicine 2016, 95, e4944. [Google Scholar] [CrossRef]
- Kanbay, A.; Kaya, E.; Büyükoğlan, H.; Kaya, M.G.; Şimşek, Z.Ö.; Tutar, N.; Demir, R. Correlation between pentraxin-3 and endothelial dysfunction in obstructive sleep apnea syndrome. Ann. Thorac. Med. 2015, 10, 199–203. [Google Scholar] [CrossRef]
- Al Lawati, N.M.; Patel, S.R.; Ayas, N.T. Epidemiology, risk factors, and consequences of obstructive sleep apnea and short sleep duration. Prog. Cardiovasc. Dis. 2009, 51, 285–293. [Google Scholar] [CrossRef]
- Lui, M.M.; Lam, J.C.; Mak, H.K.; Xu, A.; Ooi, C.; Lam, D.C.; Mak, J.C.; Khong, P.L.; Ip, M.S. C-reactive protein is associated with obstructive sleep apnea independent of visceral obesity. Chest 2009, 135, 950–956. [Google Scholar] [CrossRef]
- Bouloukaki, I.; Mermigkis, C.; Kallergis, E.M.; Moniaki, V.; Mauroudi, E.; Schiza, S.E. Obstructive sleep apnea syndrome and cardio-vascular disease: The influence of C-reactive protein. World J. Exp. Med. 2015, 5, 77–83. [Google Scholar] [CrossRef]
- Greenberg, H.; Ye, X.; Wilson, D.; Htoo, A.K.; Hendersen, T.; Liu, S.F. Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem. Biophys. Res. Commun. 2006, 343, 591–596. [Google Scholar] [CrossRef]
- Campos-Rodriguez, F.; Asensio-Cruz, M.I.; Cordero-Guevara, J.; Jurado-Gamez, B.; Carmona-Bernal, C.; Gonzalez-Martinez, M.; Troncoso, M.F.; Sanchez-Lopez, V.; Arellano-Orden, E.; Garcia-Sanchez, M.I.; et al. Effect of continuous positive airway pressure on inflammatory, antioxidant, and depression biomarkers in women with obstructive sleep apnea: A randomized controlled trial. Sleep 2019, 42, zsz145. [Google Scholar] [CrossRef]
- Martin, A.J.; Price, C.I. A Systematic Review and Meta-Analysis of Molecular Biomarkers Associated with Early Neurological Deterioration Following Acute Stroke. Cerebrovasc. Dis. 2019, 46, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.P.; Morris, D.R.; Smith, S.; Moxon, J.V.; Golledge, J. Systematic Review and Meta-Analysis of the Association Between C-Reactive Protein and Major Cardiovascular Events in Patients with Peripheral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 220–233. [Google Scholar] [CrossRef]
- Ji, P.; Zhu, J.; Zhong, Z.; Li, H.; Pang, J.; Li, B.; Zhang, J. Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine 2020, 99, e23315. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
First Author, Year | Country | Ethnicity | No. of OSA /Control | OSA Patients | Controls | Biomarker | Sample | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Age (Years) | BMI (kg/m2) | AHI (Events/h) | Age (Years) | BMI (kg/m2) | AHI (Events/h) | ||||||
Adults | |||||||||||
Shamsuzzaman, 2002 [33] | USA | Mixed | 22/20 | 48 ± 14.07 | 36 ± 18.76 | 60 ± 23.45 | 43 ± 13.41 | 34 ± 17.88 | 3 ± 4.47 | hs-CRP | Plasma |
Teramoto, 2003 [34] | Japan | Asian | 40/40 | Adult | NR | ≥5 | Adult | NR | <5 | hs-CRP | Plasma |
Yokoe, 2003 [35] | Japan | Asian | 26/14 | 52.5 ± 29.07 | 28.4 ± 17.85 | 33.7 ± 12.75 | 48.8 ± 11.72 | 27.6 ± 1.87 | 2.8 ± 0.74 | hs-CRP | Serum |
Barceló, 2004 [36] | Spain | Caucasian | 47/18 | 48.5 ± 9 | 30.4 ± 2.5 | 46 ± 11 | 47 ± 5 | 25.5 ± 2.9 | 2 ± 1 | CRP | Plasma |
Guilleminault, 2004 [37] | USA | Mixed | 146/54 | 46.81 ± 11.42 | 29.39 ± 7.05 | ≥5 | 43.87 ± 9.79 | 24.74 ± 5.34 | <5 | CRP | Serum |
Minoguchi, 2005 [38] | Japan | Asian | 36/16 | 48.22 ± 14.1 | 28.01 ± 4.44 | 34.89 ± 17.46 | 46.5 ± 15.2 | 28.3 ± 5.2 | 3.3 ± 3.6 | CRP | Serum |
Can, 2006 [39] | Turkey | Caucasian | 62/30 | 47.14 ± 1.62 | 29.63 ± 0.67 | 25.04 ± 3.85 | 43.5 ± 2.1 | 26.0 ± 0.78 | <5 | CRP | Serum |
Minoguchi, 2006 [40] | Japan | Asian | 40/30 | 49.8 ± 18.32 | 28.05 ± 04.74 | 28.15 ± 37.28 | 47.99 ± 12.58 | 25.75 ± 3.82 | 3.76 ± 2.16 | hs-CRP | Serum |
Shiina, 2006 [41] | Japan | Asian | 94/90 | 52 ± 9.69 | 28.1 ± 4.84 | 47.2 ± 19.38 | 47 ± 9.48 | 25.7 ± 3.79 | 4.2 ± 3.79 | CRP | Plasma |
Ryan, 2007 [42] | Ireland | Caucasian | 66/30 | 42.5 ± 8.5 | 32.5 ± 4.8 | 35.0 ± 13.9 | 41 ± 8 | 30.7 ± 3.1 | 1.2 ± 1.0 | hs-CRP | Serum |
Chung, 2007 [43] | Korea | Asian | 68/22 | 42.72 ± 9.12 | 26.47 ± 3.22 | ≥5 | 42.1 ± 8.7 | 26.2 ± 3.9 | <5 | hs-CRP | Plasma |
Iesato, 2007 [44] | Japan | Asian | 155/39 | 49.8 ± 1.1 | 28.9 ± 0.4 | 36.7 ± 2.1 | 47.7 ± 2.2 | 25.6 ± 0.6 | 1.8 ± 0.2 | hs-CRP | Serum |
Minoguchi, 2007 [45] | Japan | Asian | 50/15 | 49 ± 12.72 | 27.5 ± 3.88 | 27.21 ± 15.41 | 48.5 ± 11.99 | 28.1 ± 3.87 | 3.1 ± 1.54 | hs-CRP | Serum |
Jin, 2007 [46] | China | Asian | 51/25 | 49.4 ± 10.5 | 27.5 ± 1.2 | 37.03 ± 4.81 | 49.9 ± 11.7 | 27.7 ± 0.9 | 2.9 ± 0.5 | CRP | Serum |
Kapsimalis, 2008 [47] | Greece | Caucasian | 52/15 | 52.9 ± 12.7 | 30 ± 3.6 | 32.15 ± 10.4 | 47.0 ± 12.5 | 28.7 ± 4.3 | 3.1 ± 1.1 | CRP | Serum |
Saletu, 2008 [48] | Austria | Caucasian | 103/44 | 55 ± 10 | 31 ± 5 | 37.62 ± 14.06 | 50 ± 14 | 27 ± 6 | 1.9 ± 1.3 | hs-CRP | Serum |
Sharma, 2008 [49] | India | Caucasian | 29/68 | 45.28 ± 8.59 | 29.17 ± 4.02 | 48.64 ± 26.02 | 40.7 ± 9.3 | 26.72 ± 2.9 | 0.55 ± 1.24 | hs-CRP | Serum |
Takahashi, 2008 [50] | Japan | Asian | 41/12 | 49.8 ± 10 | 29.4 ± 4.2 | ≥5 | 46.7 ± 11.2 | 25.7 ± 4.1 | <5 | hs-CRP | Plasma |
Bhushan, 2009 [51] | India | Caucasian | 62/46 | 43.8 ± 11.2 | 30.9 ± 4.4 | ≥5 | 41.7 ± 6.9 | 29.9 ± 3.0 | <5 | hs-CRP | Serum |
Carneiro, 2009 [52] | Brazil | Mixed | 16/13 | 40.1 ± 211.2 | 46.9 ± 8.0 | 65.7 ± 39.96 | 38.8 ± 11.88 | 42.8 ± 4.68 | 3.2 ± 01.81 | hs-CRP | Plasma |
Cofta, 2009 [53] | Poland | Caucasian | 40/14 | 50.66 ± 10.33 | 30.13 ± 4.23 | 25.71 ± 8.04 | 50 ± 10 | 30.2 ± 5.4 | 2.2 ± 1.2 | hs-CRP | Serum |
Makino, 2009 [54] | Japan | Asian | 157/24 | 52.59 ± 1.76 | 26.35 ± 0.5 | 28.77 ± 1.81 | 47.6 ± 2.8 | 25.0 ± 0.6 | 3.1 ± 0.4 | CRP | Plasma |
Sahlman, 2010 [55] | Finland | Caucasian | 84/40 | 50.4 ± 9.3 | 32.5 ± 3.3 | 9.6 ± 2.9 | 45.6 ± 11.5 | 31.5 ± 3.5 | 1.9 ± 1.4 | hs-CRP | Plasma |
Aihara, 2011 [56] | Japan | Asian | 150/20 | 57.0 ± 14.4 | 27.13 ± 5.49 | 36.44 ± 12.52 | 43.6 ± 17.7 | 24.8 ± 3.4 | 2.2 ± 1.5 | hs-CRP | Serum |
Barceló, 2011 [57] | Spain | Caucasian | 119/119 | 46.0 ± 12.0 | 28.0 ± 4.0 | 38.56 ± 22.44 | 45.0 ± 11.0 | 28.0 ± 4.0 | 3.16 ± 2.0 | CRP | Plasma |
Basoglu, 2011 [58] | Turkey | Caucasian | 36/34 | 50.0 ± 19.7 | 33.5 ± 5.7 | ≥5 | 49.7 ± 11.1 | 34.5 ± 2.9 | <5 | hs-CRP | Serum |
Fredheim, 2011 [59] | Norway | Caucasian | 84/53 | 48 ± 9.8 | 47.2 ± 6.1 | ≥5 | 36 ± 8.8 | 46.3 ± 5.2 | <5 | hs-CRP | Serum |
Guasti, 2011 [60] | Italy | Caucasian | 16/11 | 61 ± 10 | 31.76 ± 4.39 | 39.6 ± 19.1 | 55 ± 14 | 31.71 ± 4.44 | <5 | hs-CRP | Serum |
Kanbay, 2011 [61] | Turkey | Caucasian | 144/22 | 54.85 ± 11.82 | 33.03 ± 6.2 | ≥5 | 50.7 ± 13.9 | 29.3 ± 8.5 | <5 | CRP | Serum |
Kasai, 2011 [62] | Japan | Asian | 50/25 | 51 ± 11.8 | 17.3 ± 3.6 | 32.28 ± 13.04 | 50.9 ± 12.4 | 26.8 ± 3.7 | 2.7 ± 1.3 | hs-CRP | Serum |
Balci, 2012 [63] | Turkey | Caucasian | 61/33 | 44.2 ± 10.8 | 27.2 ± 2.36 | 40.3 ± 27.3 | 41.6 ± 11.6 | 26.3 ± 1.4 | 3.2 ± 1.9 | hs-CRP | Serum |
Chien, 2012 [64] | Taiwan | Asian | 30/30 | 50.5 ± 5.7 | 26.54 ± 2.40 | 48.4 ± 17.3 | 49.9 ± 6.8 | 25.87 ± 2.59 | 2.7 ± 1.3 | hs-CRP | Serum |
Feng, 2012 [65] | China | Asian | 132/108 | 47.51 ± 10.31 | 27.17 ± 3.77 | ≥5 | 47.29 ± 10.89 | 27.07 ± 3.10 | <5 | CRP | Serum |
Fornadi, 2012 [66] | Canada | Mixed | 25/75 | 54.0 ± 12.0 | 29.0 ± 5.0 | ≥5 | 50.0 ± 13.0 | 26.0 ± 5.0 | <5 | CRP | Serum |
Guven, 2012 [67] | Turkey | Caucasian | 47/29 | 52.43 ± 8.19 | 29.62 ± 4.50 | 20.78 ± 3.03 | 53.24 ± 9.41 | 28.14 ± 3.77 | <5 | hs-CRP | Serum |
Panoutsopoulos, 2012 [68] | Greece | Caucasian | 20/18 | 54.30 ± 10.84 | 31.30 ± 2.00 | 25.35 ± 15.05 | 48.33 ± 7.67 | 30.00 ± 2.14 | 2.67 ± 1.41 | CRP | Plasma |
Chen, 2013 [69] | Taiwan | Asian | 44/20 | 42.38 ± 11.95 | 27.11 ± 3.53 | 14.57 ± 2.85 | 42 ± 11 | 42 ± 11 | 3.3 ± 0.9 | hs-CRP | Plasma |
Kosacka, 2013 [70] | Poland | Caucasian | 137/42 | 54.37 ± 9.83 | 34.28 ± 7.91 | 34.17 ± 21.77 | 50.69 ± 12.27 | 30.04 ± 5.40 | 2.14 ± 1.92 | CRP | Serum |
Wang, 2013 [71] | China | Asian | 192/144 | 49.24 ± 9.93 | 26.89 ± 3.58 | 24 ± 8.89 | 48.74 ± 10.62 | 27.14 ± 3.28 | 2 ± 1.48 | CRP | Serum |
Zhang, 2013 [72] | China | Asian | 75/23 | 32.2 ± 5.5 | 28.38 ± 3.56 | 26.65 ± 7.47 | 33.52 ± 4.71 | 26.42 ± 3.10 | 3.27 ± 1.62 | hs-CRP | Serum |
Akilli, 2014 [73] | Turkey | Caucasian | 149/50 | 51.0 ± 9.1 | 32.0 ± 5.0 | ≥5 | 49.1 ± 8.5 | 29.6 ± 3.92 | <5 | hs-CRP | Serum |
Ciccone, 2014 [74] | Italy | Caucasian | 80/40 | 52.8 ± 10.6 | 28.6 ± 3.0 | 33.9 ± 21 | 52.3 ± 10.5 | 28.2 ± 2.7 | 2.1 ± 1.1 | hs-CRP | Plasma |
Li, 2014 [75] | China | Asian | 156/110 | 47.0 ± 9.8 | 26.80 ± 3.2 | 23.71 ± 4.31 | 49.01 ± 8.11 | 27.36 ± 3.36 | 2.0 ± 1.48 | CRP | Serum |
Niżankowska-Jędrzejczyk, 2014 [76] | Canada | Caucasian | 22/16 | 52.50 ± 8.33 | 30.15 ± 2.77 | 23.65 ± 11.51 | 54.06 ± 12.09 | 28.02 ± 3.36 | 2.24 ± 1.79 | CRP | Plasma |
Shi, 2014 [77] | China | Asian | 126/74 | 48.67 ± 9.18 | 26.47 ± 2.38 | ≥5 | 49.15 ± 14.25 | 26.48 ± 2.41 | <5 | hs-CRP | Serum |
Sökücü, 2014 [78] | Turkey | Caucasian | 36/22 | 47.44 ± 11.68 | 33.10 ± 4.35 | 59.25 ± 18.99 | 40.76 ± 11.62 | 28.68 ± 6.09 | 3.41 ± 1.19 | CRP | Serum |
Yadav, 2014 [79] | UK | Caucasian | 20/21 | 49 ± 10 | 52 ± 6 | 26.83 ± 23.85 | 45 ± 9 | 50 ± 8 | 4.93 ± 2.29 | hs-CRP | Serum |
Yüksel, 2014 [80] | Turkey | Caucasian | 51/15 | 49 ± 10 | 31.0 ± 5.4 | 55.1 ± 17.2 | 46 ± 14 | 27.7 ± 3.9 | 1.5 ± 1.7 | hs-CRP | Serum |
Abakay, 2015 [81] | Turkey | Caucasian | 44/49 | 47.4 ± 7.2 | 28.1 ± 6.3 | 25.1 ± 20.8 | 44.9 ± 11 | 25.8 ± 6.7 | 2.0 ± 0.9 | CRP | Serum |
Andaku, 2015 [82] | Brazil | Mixed | 14/11 | 42.36 ± 9.48 | 26.65 ± 2.38 | 29.48 ± 22.83 | 43.00 ± 10.56 | 24.14 ± 2.67 | 2.71 ± 1.48 | hs-CRP | Serum |
da Silva Araújo, 2015 [83] | Brazil | Mixed | 33/20 | 39.60 ± 1.48 | 34.39 ± 0.51 | 20.16 ± 3.57 | 32.50 ± 2.09 | 34.51 ± 0.66 | 2.55 ± 0.35 | hs-CRP | Serum |
Asker, 2015 [84] | Turkey | Caucasian | 30/30 | >18 | 34.35 ± 6.23 | 69.02 ± 29.04 | >18 | 25.48 ± 2.29 | 2.23 ± 1.43 | CRP | Serum |
Bakırcı, 2015 [85] | Turkey | Caucasian | 40/40 | 50.2 ± 7.6 | 29.2 ± 3.3 | ≥5 | 51.7 ± 8.3 | 28.6 ± 3.7 | <5 | hs-CRP | Serum |
Kanbay, 2015 [81] | Turkey | Caucasian | 64/19 | 53.91 ± 11.56 | 34.93 ± 5.58 | 44.41 ± 7.99 | 44.47 ± 13.37 | 31.6 ± 5.7 | 2.08 ± 1.3 | hs-CRP | Serum |
Korkmaz, 2015 [86] | Turkey | Caucasian | 107/40 | 47 ± 9 | 32 | ≥5 | 43.30 ± 11.14 | 29.27 | <5 | CRP | Serum |
Xu, 2015 [87] | China | Asian | 137/78 | 58.33 ± 8.61 | 26.1 ± 2.17 | ≥5 | 57.35 ± 8.08 | 25.77 ± 1.29 | <5 | hs-CRP | Serum |
Altintas, 2016 [88] | Turkey | Caucasian | 40/40 | 54.86 ± 10.42 | 34.85 ± 6.22 | 53.43 ± 15.92 | 51.5 ± 6.7 | 32.9 ± 4.7 | 1.9 ± 1.4 | CRP | Serum |
Archontogeorgis, 2016 [89] | Greece | Caucasian | 64/20 | 51.78 ± 11.55 | 36.34 ± 13.18 | ≥5 | 51.40 ± 16.24 | 33.73 ± 5.68 | <5 | CRP | Serum |
Borratynska, 2016 [90] | Poland | Caucasian | 110/55 | 57.33 ± 11.11 | 32.37 ± 6.89 | 22 ± 20 | 54.66 ± 10.37 | 28.95 ± 3.55 | 2 ± 2.96 | hs-CRP | Plasma |
Can, 2016 [91] | Turkey | Caucasian | 23/27 | 56.2 ± 8.4 | 30.0 ± 3.8 | 34.0 ± 20.6 | 49.6 ± 11.7 | 28.8 ± 4.6 | 1.6 ± 1.2 | CRP | Serum |
Cao, 2016 [92] | China | Asian | 192/56 | 53.41 ± 12.3 | 25.81 ± 3.97 | 21.80 ± 3.41 | 49.4 ± 11.6 | 24.2 ± 2.7 | 3.2 ± 1.3 | CRP | Serum |
Kim, 2016 [93] | Korea | Asian | 862/973 | 57.45 ± 7.34 | 25.3 ± 2.8 | 13.41 ± 5.05 | 53.8 ± 6.6 | 23.9 ± 2.6 | 1.9 ± 1.4 | hs-CRP | Plasma |
Qi, 2016 [94] | China | Asian | 96/10 | 52.0 ± 12.66 | 23.70 ± 1.50 | 31.38 ± 10.20 | 46.7 ± 8.68 | 23.71 ± 1.06 | 2.96 ± 2.31 | hs-CRP | Serum |
Tanrıverdi, 2016 [95] | Turkey | Caucasian | 53/24 | 49.9 ± 8.8 | 31.6 ± 5.2 | 27.5 ± 22.7 | 44.2 ± 13.4 | 29.4 ± 4.6 | 1.73 ± 1.2 | CRP | Serum |
Tie, 2016 [96] | China | Asian | 30/20 | 68.27 ± 8.32 | 26.61 ± 2.22 | ≥5 | 56.30 ± 8.52 | 25.73 ± 2.72 | <5 | CRP | Serum |
Vicente, 2016 [97] | Spain | Caucasian | 89/26 | 45.33 ± 14.81 | 30.03 ± 5.04 | 28 ± 23.70 | 45 ± 11.11 | 28.7 ± 4.37 | 1.9 ± 2.7 | CRP | Plasma |
Uygur, 2016 [98] | Turkey | Caucasian | 96/31 | 51.4 ± 9.7 | 30.8 ± 3.7 | 27.9 ± 20.6 | 50.6 ± 12.8 | 29.6 ± 4.1 | 1.9 ± 1.7 | CRP | Serum |
Zhang, 2016 [99] | China | Asian | 41/19 | 48.08 ± 7.14 | 24.77 ± 1.51 | 37.55 ± 4.62 | 47.45 ± 8.37 | 24.48 ± 1.66 | 3.65 ± 0.42 | hs-CRP | Serum |
Bouloukaki, 2017 [100] | Greece | Caucasian | 858/190 | 43 ± 11.5 | 31 ± 8 | 44 ± 23 | 38.8 ± 14.1 | 26.6 ± 6 | 2 ± 2 | hs-CRP | Serum |
Gamsiz-Isik, 2017 [101] | Turkey | Caucasian | 83/80 | 46.87 ± 8.21 | 31.53 ± 3.44 | ≥5 | 44.23 ± 9.83 | 30.91 ± 3.31 | <5 | hs-CRP | Serum |
Karamanli, 2017 [102] | Turkey | Caucasian | 68/30 | 47.2 ± 1.2 | 27.3 ± 3.4 | 34.7 ± 22.2 | 51.5 ± 1.3 | 26.2 ± 3.1 | 2.4 ± 1.5 | CRP | Serum |
Kosacka, 2017 [103] | Poland | Caucasian | 163/59 | 55.41 ± 8.63 | 34.98 ± 7.55 | 35.02 ± 22.28 | 51.27 ± 12.97 | 29.47 ± 5.42 | 2.21 ± 1.90 | CRP | Serum |
Suliman, 2017 [104] | Egypt | Caucasian | 43/17 | 50.2 ± 11.2 | 42.2 ± 6.5 | ≥5 | 46.8 ± 13.09 | 41.6 ± 3.3 | <5 | hs-CRP | Serum |
Xu, 2017 [105] | China | Asian | 33/30 | 51.6 ± 9.8 | 30.1 ± 3.5 | 19.6 ± 4.7 | 49.2 ± 13.1 | 28.9 ± 4.4 | 2.2 ± 1.5 | hs-CRP | Serum |
Bozic, 2018 [106] | Croatia | Caucasian | 50/25 | 53.0 ± 11.9 | 28.9 ± 2.7 | 35.0 ± 11.0 | 52.5 ± 10.2 | 27.8 ± 2.2 | <5 | hs-CRP | Plasma |
Bozkus, 2018 [107] | Turkey | Caucasian | 167/39 | 47.75 ± 10.45 | 31.15 ± 5.82 | 33.77 ± 23.11 | 42.8 ± 10.02 | 24.50 ± 3.45 | 3.37 ± 1.15 | CRP | Serum |
Cengiz, 2018 [108] | Turkey | Caucasian | 44/44 | 44 ± 10 | 31.27 ± 12.19 | ≥5 | 44 ± 12 | 32.23 ± 17.24 | <5 | CRP | Serum |
Horvath, 2018 [109] | Hungary | Caucasian | 50/26 | 61 ± 9 | 31 ± 6 | 49.1 ± 84.22 | 56 ± 8 | 26 ± 3 | 2.2 ± 3.55 | CRP | Plasma |
Kunos, 2018 [110] | Hungary | Caucasian | 45/31 | 60 ± 11 | 31.0 ± 6.5 | 27.8 ± 21.6 | 53 ± 15 | 25.4 ± 3.6 | 2.3 ± 1.2 | CRP | Serum |
Ozkok, 2018 [111] | Turkey | Caucasian | 120/31 | 52.48 ± 12.05 | 32.85 ± 5.7 | 40.09 ± 14.81 | 46 ± 13 | 30 ± 5 | 2.84 ± 1.41 | hs-CRP | Serum |
Ye, 2018 [112] | China | Asian | 105/41 | 46 ± 9.5 | 28 ± 3.4 | 30.16 ± 12.80 | 46 ± 9 | 26.2 ± 3.1 | 2 ± 2 | CRP | Serum |
Zhang, 2018 [113] | China | Asian | 30/20 | 40.73 ± 8.90 | 28.85 ± 2.62 | 61.48 ± 15.00 | 36.10 ± 13.67 | 27.55 ± 2.97 | 1.93 ± 1.38 | hs-CRP | Plasma |
Bhatt, 2019 [114] | India | Caucasian | 47/25 | 44.2 ± 9.1 | 32.5 ± 6.9 | 13.5 ± 6.4 | 28.5 ± 8.6 | 41 ± 8.5 | 2.3 ± 1.1 | CRP | Serum |
Jung, 2019 [115] | Korea | Asian | 87/21 | 45.76 ± 3.07 | 26.40 ± 2.87 | ≥5 | 47.1 ± 2.6 | 27.6 ± 8.1 | <5 | hs-CRP | Serum |
Li, 2019 [116] | China | Asian | 77/23 | 44.18 ± 12.18 | 26.82 ± 3.78 | 39.87 ± 25.66 | 43.78 ± 14.35 | 23.24 ± 3.43 | 2.47 ± 1.27 | CRP | Serum |
Płóciniczak, 2019 [117] | Poland | Asian | 57/44 | 56.33 ± 11.11 | 31.57 ± 4.74 | 30.26 ± 30.96 | 50.66 ± 11.85 | 26.63 ± 4.29 | 2.03 ± 2.0 | hs-CRP | Serum |
Voulgaris, 2019 [118] | Greece | Caucasian | 64/32 | 51 ± 12.2 | 35.9 ± 13.1 | ≥5 | 50.1 ± 11.7 | 33.9 ± 8.8 | <5 | CRP | Serum |
Wang, 2019 [119] | China | Asian | 72/58 | 53.6 ± 11.9 | 25.1 ± 2.9 | 16.43 ± 7.79 | 41.8 ± 14.5 | 24.2 ± 2.6 | 1.13 ± 1.11 | hs-CRP | Serum |
Wen, 2019 [120] | China | Asian | 120/40 | 53.63 ± 11.8 | 26.63 ± 3.5 | 26.91 ± 9.38 | 46.9 ± 15.2 | 24.3 ± 3.7 | 2.8 ± 1.55 | hs-CRP | Serum |
Bocskei, 2020 [121] | Hungary | Caucasian | 53/15 | 57.33 ± 11.11 | 32.37 ± 5.66 | 29.6 ± 17.92 | 47 ± 22.96 | 24.6 ± 4.58 | 1.66 ± 1.04 | CRP | Plasma |
Chen, 2020 [122] | China | Asian | 73/17 | 42.68 ± 11.53 | 25.78 ± 2.71 | 52.1 ± 12.7 | 41.76 ± 11.71 | 25.54 ± 2.11 | 4.37 ± 2.18 | hs-CRP | Serum |
Chien, 2020 [123] | Taiwan | Asian | 20/20 | 50.2 ± 5.6 | 26.05 ± 2.92 | ≥5 | 50.4 ± 6.7 | 25.82 ± 2.76 | <5 | hs-CRP | Serum |
Düger, 2020 [124] | Turkey | Caucasian | 86/83 | 45.1 ± 3.2 | 32.3 ± 5.9 | ≥5 | 42.8 ± 14 | 30.9 ± 2.3 | <5 | CRP | Serum |
Pákó, 2020 [125] | UK | Caucasian | 41/21 | 55.6 ± 13.2 | 27.5 ± 4.8 | 16.1 ± 10.1 | 48 ± 16 | 24.9 ± 4.7 | 1.9 ± 1.2 | CRP | Serum |
Winiarska, 2020 [126] | Poland | Caucasian | 48/16 | 54.8 ± 10 | 30.60 ± 4.49 | 28.16 ± 5.27 | 49.83 ± 11.11 | 25.1 ± 3.85 | 1.86 ± 1.95 | CRP | Serum |
Xie, 2020 [127] | China | Asian | 107/34 | 48.22 ± 13.0 | 27.84 ± 3.70 | 40.49 ± 12.69 | 34.74 ± 14.02 | 23.80 ± 4.00 | 2.23 ± 1.49 | hs-CRP | Serum |
Zhang, 2020 [128] | China | Asian | 134/19 | 31 ± 7.7 | 42.95 ± 6.3 | 32.25 ± 13.25 | 27.8 ± 7.3 | 38.7 ± 3.5 | 2.8 ± 1.3 | hs-CRP | Serum |
Children | |||||||||||
Kaditis, 2010 [129] | Greece | Caucasian | 84/22 | 6.05 ± 2.21 | 1.3 ± 1.23 | 6.37 ± 5.16 | 6.8 ± 2.6 | − 0.1 ± 1.5 | 0.6 ± 0.2 | CRP | Plasma |
Kheirandish-Gozal, 2010 [130] | USA | Mixed | 80/20 | 7.2 ± 1.4 | 0.96 ± 0.3 | 12.9 ± 8.5 | 7.1 ± 1.6 | 0.56 ± 0.2 | 0.4 ± 0.3 | hs-CRP | Serum |
Kim, 2010 [4] | USA | Mixed | 140/115 | 7.54 ± 1.58 | 1.47 ± 1.31 | 5.71 ± 3.41 | 7.81 ± 1.44 | 1.15 ± 1.22 | 0.40 ± 0.27 | hs-CRP | Plasma |
Canapari, 2011 [131] | USA | Mixed | 15/16 | 12.7 ± 2.64 | 2.78 ± 0.39 | 6.26 ± 6.77 | 12.6 ± 2.73 | 2.44 ± 0.27 | 0.48 ± 0.30 | CRP | Serum |
Khalyfa, 2012 [132] | USA | Mixed | 131/323 | 7.03 ± 0.1 | 1.11 ± 1.5 | 8.13 ± 2.4 | 7.14 ± 0.1 | 0.78 ± 1.2 | 0.32 ± 0.0 | hs-CRP | Plasma |
Kim, 2013 [133] | USA | Mixed | 62/44 | 8.13 ± 1.75 | 1.61 ± 1.17 | ≥1 | 8.4 ± 1.4 | 1.35 ± 1.01 | <1 | hs-CRP | Plasma |
Iannuzzi, 2013 [134] | Italy | Caucasian | 19/25 | 9.51 ± 2.35 | 25.5 ± 7.0 | ≥1 | 10.65 ± 2.11 | 23.6 ± 7.8 | <1 | hs-CRP | Plasma |
Israel, 2013 [135] | Israel | Mixed | 25/24 | 5.1 ± 3.2 | 0.62 ± 1.04 | 14.1 ± 2.9 | 5.3 ± 3.5 | 0.57 ± 1.11 | 0.6 ± 0.2 | hs-CRP | Serum |
Gozal, 2014 [136] | USA | Mixed | 138/88 | 6.85 ± 2.0 | 1.21 ± 0.18 | ≥1 | 7.25 ± 2.05 | 1.19 ± 0.71 | <1 | hs-CRP | Plasma |
Kheirandish-Gozal, 2014 [137] | USA | Mixed | 110/109 | 6.85 ± 1.4 | 1.21 ± 0.18 | 9.0 ± 10 | 6.85 ± 1.55 | 1.19 ± 0.71 | 0.4 ± 0.4 | hs-CRP | Plasma |
Ye, 2015 [138] | China | Asian | 25/19 | 6.45 ± 2.84 | 1.28 ± 0.64 | 34.76 ± 15.28 | 6.63 ± 2.71 | 1.25 ± 0.47 | 0.38 ± 0.20 | hs-CRP | Serum |
Huang, 2016 [139] | Taiwan | Asian | 47/32 | 7.84 ± 0.56 | 0.15 ± 0.21 | 9.13 ± 1.67 | 7.02 ± 0.65 | −0.12 ± 0.27 | 0.37 ± 0.06 | hs-CRP | Serum |
Smith, 2017 [3] | USA | Mixed | 65/90 | 9.2 ± 2.6 | 1.1 ± 1.25 | 11.06 ± 7.99 | 9.7 ± 2.5 | 0.7 ± 1 | 0.4 ± 0.3 | CRP | Serum |
Variable | Studies | OSA | Control | Weight | Mean Difference IV, Random, 95% CI | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Total | Mean | SD | Total | ||||
Plasma hs-CRP | Shamsuzzaman, 2002 [33] | 0.87 | 0.66 | 20 | 0.28 | 0.22 | 20 | 2.2% | 0.59 [0.29, 0.89] |
Teramoto, 2003 [34] | 0.31 | 0.13 | 40 | 0.12 | 0.06 | 40 | 11.5% | 0.19 [0.15, 0.23] | |
Chung, 2007 [43] | 0.12 | 0.14 | 68 | 0.063 | 0.083 | 22 | 11.3% | 0.06 [0.01, 0.11] | |
Takahashi, 2008 [50] | 0.172 | 0.141 | 41 | 0.087 | 0.096 | 12 | 10.1% | 0.08 [0.02, 0.15] | |
Carneiro, 2009 [52] | 0.83 | 0.14 | 16 | 0.91 | 0.34 | 13 | 4.2% | −0.08 [−0.28, 0.12] | |
Sahlman, 2010 [55] | 0.167 | 0.253 | 84 | 0.13 | 0.253 | 40 | 8.6% | 0.04 [−0.06, 0.13] | |
Chen, 2013 [69] | 0.057 | 0.069 | 44 | 0.01 | 0.0148 | 20 | 12.4% | 0.05 [0.03, 0.07] | |
Borratynska, 2016 [90] | 0.243 | 0.207 | 110 | 0.157 | 0.17 | 55 | 10.7% | 0.09 [0.03, 0.15] | |
Kim, 2016 [93] | 1.28 | 1.41 | 862 | 0.97 | 1.22 | 973 | 7.2% | 0.31 [0.19, 0.43] | |
Bozic, 2018 [106] | 0.287 | 0.067 | 50 | 0.129 | 0.031 | 25 | 12.4% | 0.16 [0.14, 0.18] | |
Zhang, 2018 [113] | 0.209 | 0.18 | 30 | 0.119 | 0.114 | 20 | 9.4% | 0.09 [0.01, 0.17] | |
Total (95% CI) | 1365 | 1240 | 100.0% | 0.11 [0.07, 0.16] | |||||
Heterogeneity: Tau2 = 0.00; Chi2 = 94.93, df = 10 (p < 0.00001); I2 = 89%; Test for overall effect: Z = 4.57 (p < 0.00001) |
Variable | Studies | OSA | Control | Weight | Mean Difference IV, Random, 95% CI | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Total | Mean | SD | Total | ||||
Serum hs-CRP | Yokoe, 2003 [35] | 0.21 | 0.1 | 26 | 0.07 | 0.037 | 14 | 3.5% | 0.14 [0.10, 0.18] |
Minoguchi, 2006 [40] | 0.16 | 0.15 | 40 | 0.06 | 0.078 | 30 | 3.2% | 0.10 [0.05, 0.15] | |
Iesato, 2007 [44] | 0.152 | 0.011 | 155 | 0.072 | 0.011 | 39 | 4.2% | 0.08 [0.08, 0.08] | |
Ryan, 2007 [42] | 0.228 | 0.183 | 66 | 0.132 | 0.1 | 30 | 3.1% | 0.10 [0.04, 0.15] | |
Minoguchi, 2007 [45] | 0.21 | 0.19 | 50 | 0.1 | 0.08 | 15 | 2.8% | 0.11 [0.04, 0.18] | |
Sharma, 2008 [49] | 0.51 | 0.37 | 29 | 0.46 | 0.44 | 68 | 1.0% | 0.05 [−0.12, 0.22] | |
Saletu, 2008 [48] | 0.478 | 0.621 | 103 | 0.28 | 0.46 | 44 | 0.9% | 0.20 [0.02, 0.38] | |
Bhushan, 2009 [51] | 0.36 | 0.2 | 62 | 0.14 | 0.14 | 46 | 2.9% | 0.22 [0.16, 0.28] | |
Cofta, 2009 [53] | 0.231 | 0.116 | 40 | 0.2 | 0.102 | 14 | 2.9% | 0.03 [−0.03, 0.10] | |
Aihara, 2011 [56] | 0.181 | 0.298 | 150 | 0.14 | 0.27 | 20 | 1.5% | 0.04 [−0.09, 0.17] | |
Kasai, 2011 [62] | 0.192 | 0.177 | 50 | 0.129 | 0.117 | 25 | 2.8% | 0.06 [−0.00, 0.13] | |
Guasti, 2011 [60] | 0.298 | 0.27 | 16 | 0.481 | 0.472 | 11 | 0.4% | −0.18 [−0.49, 0.13] | |
Basoglu, 2011 [58] | 0.4 | 0.2 | 36 | 0.3 | 0.1 | 34 | 2.6% | 0.10 [0.03, 0.17] | |
Fredheim, 2011 [59] | 2.6 | 2.1 | 84 | 3.5 | 3.2 | 53 | 0.0% | −0.90 [−1.87, 0.07] | |
Chien, 2012 [64] | 0.207 | 0.092 | 30 | 0.102 | 0.057 | 30 | 3.6% | 0.10 [0.07, 0.14] | |
Balci, 2012 [63] | 4.25 | 2.45 | 61 | 1.6 | 0.7 | 33 | 0.1% | 2.65 [1.99, 3.31] | |
Guven, 2012 [67] | 0.403 | 0.358 | 47 | 0.241 | 0.195 | 29 | 1.5% | 0.16 [0.04, 0.29] | |
Zhang, 2013 [72] | 0.0997 | 0.0268 | 75 | 0.088 | 0.02 | 23 | 4.2% | 0.01 [0.00, 0.02] | |
Ciccone, 2014 [74] | 0.167 | 0.061 | 80 | 0.108 | 0.053 | 40 | 4.0% | 0.06 [0.04, 0.08] | |
Yadav, 2014 [79] | 0.75 | 0.474 | 20 | 0.76 | 0.259 | 21 | 0.6% | −0.01 [−0.25, 0.23] | |
Yüksel, 2014 [80] | 6.0 | 3.6 | 44 | 1.0 | 0.7 | 49 | 0.0% | 5.00 [3.92, 6.08] | |
Akilli, 2014 [73] | 3.18 | 2.56 | 149 | 3.0 | 2.54 | 50 | 0.1% | 0.18 [−0.64, 1.00] | |
Shi, 2014 [77] | 0.943 | 0.525 | 126 | 0.593 | 0.333 | 74 | 1.6% | 0.35 [0.23, 0.47] | |
Korkmaz, 2015 [86] | 0.59 | 1.01 | 107 | 0.31 | 0.18 | 40 | 0.8% | 0.28 [0.08, 0.48] | |
da Silva Araújo, 2015 [83] | 0.055 | 0.0090 | 33 | 0.046 | 0.0070 | 20 | 4.2% | 0.01 [0.00, 0.01] | |
Kanbay, 2015 [81] | 1.023 | 0.598 | 64 | 0.505 | 0.296 | 19 | 0.8% | 0.52 [0.32, 0.72] | |
Andaku, 2015 [82] | 0.21 | 0.06 | 11 | 0.11 | 0.08 | 10 | 3.0% | 0.10 [0.04, 0.16] | |
Xu, 2015 [87] | 0.107 | 0.081 | 137 | 0.055 | 0.034 | 78 | 4.1% | 0.05 [0.04, 0.07] | |
Bakırcı, 2015 [85] | 0.13 | 0.05 | 40 | 0.1 | 0.03 | 40 | 4.1% | 0.03 [0.01, 0.05] | |
Zhang, 2016 [99] | 0.425 | 0.061 | 41 | 0.332 | 0.035 | 19 | 4.0% | 0.09 [0.07, 0.12] | |
Qi, 2016 [94] | 0.113 | 0.112 | 96 | 0.157 | 0.234 | 10 | 1.2% | −0.04 [−0.19, 0.10] | |
Gamsiz-Isik, 2017 [101] | 0.495 | 0.895 | 83 | 0.238 | 0.18 | 80 | 0.8% | 0.26 [0.06, 0.45] | |
Suliman, 2017 [104] | 3.41 | 4.52 | 43 | 0.6 | 0.89 | 17 | 0.0% | 2.81 [1.39, 4.23] | |
Xu, 2017 [105] | 0.147 | 0.16 | 33 | 0.097 | 0.122 | 30 | 2.7% | 0.05 [−0.02, 0.12] | |
Bouloukaki, 2017 [100] | 0.539 | 1.07 | 858 | 0.367 | 0.592 | 190 | 1.8% | 0.17 [0.06, 0.28] | |
Ozkok, 2018 [111] | 0.371 | 0.501 | 120 | 0.143 | 0.281 | 31 | 1.4% | 0.23 [0.09, 0.36] | |
Wang, 2019 [119] | 0.209 | 0.246 | 72 | 0.14 | 0.059 | 58 | 3.1% | 0.07 [0.01, 0.13] | |
Jung, 2019 [115] | 0.048 | 0.057 | 87 | 0.038 | 0.033 | 21 | 4.1% | 0.01 [−0.01, 0.03] | |
Chen, 2020 [122] | 0.113 | 0.03 | 73 | 0.081 | 0.022 | 17 | 4.2% | 0.03 [0.02, 0.04] | |
Wen, 2019 [120] | 0.183 | 0.281 | 120 | 0.107 | 0.133 | 40 | 2.9% | 0.08 [0.01, 0.14] | |
Płóciniczak, 2019 [117] | 0.203 | 0.148 | 57 | 0.133 | 0.111 | 44 | 3.3% | 0.07 [0.02, 0.12] | |
Chien, 2020 [123] | 0.23 | 0.14 | 20 | 0.12 | 0.06 | 20 | 2.8% | 0.11 [0.04, 0.18] | |
Zhang, 2020 [128] | 1.0 | 0.693 | 134 | 0.8 | 0.54 | 19 | 0.5% | 0.20 [−0.07, 0.47] | |
Xie, 2020 [127] | 0.282 | 0.331 | 107 | 0.082 | 0.121 | 34 | 2.6% | 0.20 [0.13, 0.27] | |
Total (95% CI) | 3875 | 1629 | 100.0% | 0.09 [0.07, 0.11] | |||||
Heterogeneity: Tau2 = 0.00; Chi2 = 989.97, df = 43 (p < 0.00001); I2 = 96%; Test for overall effect: Z = 9.49 (p < 0.00001) |
Variable | Studies | OSA | Control | Weight | Mean Difference IV, Random, 95% CI | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Total | Mean | SD | Total | ||||
Plasma CRP | Barceló, 2004 [36] | 19.27 | 3.05 | 47 | 7.24 | 2.81 | 18 | 2.9% | 12.03 [10.47, 13.59] |
Shiina, 2006 [41] | 1.5 | 0.94 | 94 | 1.1 | 0.97 | 90 | 11.6% | 0.40 [0.12, 0.68] | |
Makino, 2009 [54] | 0.118 | 0.136 | 157 | 0.039 | 0.039 | 24 | 12.8% | 0.08 [0.05, 0.11] | |
Barceló, 2011 [57] | 2.17 | 2.0 | 119 | 7.0 | 1.98 | 119 | 9.4% | −4.83 [−5.34,−4.32] | |
Panoutsopoulos, 2012 [68] | 0.82 | 0.16 | 20 | 0.29 | 0.14 | 18 | 12.7% | 0.53 [0.43, 0.63] | |
Niżankowska-Jędrzejczyk, 2014 [76] | 0.127 | 0.141 | 22 | 0.108 | 0.069 | 16 | 12.8% | 0.02 [−0.05, 0.09] | |
Vicente, 2016 [97] | 0.533 | 0.211 | 30 | 0.235 | 0.09 | 20 | 12.7% | 0.30 [0.21, 0.38] | |
Horvath, 2018 [109] | 0.42 | 0.37 | 50 | 0.4 | 0.18 | 26 | 12.6% | 0.02 [−0.10, 0.14] | |
Bocskei, 2020 [121] | 0.234 | 0.243 | 53 | 0.24 | 0.224 | 15 | 12.5% | −0.01 [−0.14, 0.12] | |
Total (95% CI) | 592 | 346 | 100.0% | 0.06 [−0.24, 0.36] | |||||
Heterogeneity: Tau2 = 0.18; Chi2 = 704.06, df = 8 (p < 0.00001); I2 = 99%; Test for overall effect: Z = 0.36 (p = 0.72) |
Variable | Studies | OSA | Control | Weight | Mean Difference IV, Random, 95% CI | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Total | Mean | SD | Total | ||||
Serum CRP | Minoguchi, 2005 | 2.1 | 1.95 | 36 | 0.09 | 0.02 | 16 | 1.3% | 2.01 [1.37, 2.65] |
Can, 2006 | 3.9 | 1.93 | 62 | 1.8 | 0.61 | 30 | 1.7% | 2.10 [1.57, 2.63] | |
Jin, 2007 | 3.68 | 0.94 | 51 | 1.4 | 0.9 | 25 | 2.1% | 2.28 [1.84, 2.72] | |
Kapsimalis, 2008 | 0.31 | 0.25 | 52 | 0.19 | 0.1 | 15 | 4.3% | 0.12 [0.04, 0.20] | |
Kanbay, 2011 | 8.11 | 4.72 | 144 | 4.8 | 1.7 | 22 | 0.6% | 3.31 [2.26, 4.36] | |
Feng, 2012 | 0.276 | 0.091 | 132 | 0.384 | 0.125 | 108 | 4.5% | −0.11 [−0.14, −0.08] | |
Fornadi, 2012 | 3.73 | 3.11 | 25 | 3.41 | 3.41 | 75 | 0.3% | 0.32 [−1.12, 1.76] | |
Wang, 2013 | 0.36 | 0.214 | 192 | 0.224 | 0.145 | 144 | 4.5% | 0.14 [0.10, 0.17] | |
Kosacka, 2013 | 6.58 | 6.52 | 137 | 4.09 | 2.79 | 42 | 0.4% | 2.49 [1.11, 3.87] | |
Sökücü, 2014 | 0.498 | 0.404 | 36 | 0.117 | 0.185 | 22 | 4.0% | 0.38 [0.23, 0.53] | |
Li, 2014 | 0.361 | 0.176 | 156 | 0.226 | 0.15 | 110 | 4.5% | 0.13 [0.10, 0.17] | |
Asker, 2015 | 0.0919 | 0.0872 | 30 | 0.049 | 0.052 | 30 | 4.5% | 0.04 [0.01, 0.08] | |
Guilleminault, 2004 | 0.464 | 0.674 | 146 | 0.41 | 0.21 | 54 | 4.1% | 0.05 [−0.07, 0.18] | |
Tanrıverdi, 2016 | 0.33 | 0.281 | 53 | 0.271 | 0.25 | 24 | 4.1% | 0.06 [−0.07, 0.18] | |
Tie, 2016 | 0.533 | 0.211 | 30 | 0.235 | 0.09 | 20 | 4.3% | 0.30 [0.21, 0.38] | |
Uygur, 2016 | 0.36 | 0.18 | 96 | 0.14 | 0.09 | 20 | 4.5% | 0.22 [0.17, 0.27] | |
Altintas, 2016 | 3.63 | 5.63 | 40 | 2.8 | 3.26 | 40 | 0.2% | 0.83 [−1.19, 2.85] | |
Cao, 2016 | 1.238 | 0.271 | 192 | 0.92 | 0.12 | 56 | 4.5% | 0.32 [0.27, 0.37] | |
Can, 2016 | 0.536 | 0.308 | 23 | 0.26 | 0.21 | 27 | 4.0% | 0.28 [0.13, 0.42] | |
Archontogeorgis, 2016 | 0.55 | 0.57 | 64 | 0.32 | 0.41 | 20 | 3.4% | 0.23 [0.00, 0.46] | |
Kosacka, 2017 | 0.655 | 0.624 | 163 | 0.27 | 0.15 | 30 | 4.2% | 0.39 [0.28, 0.49] | |
Karamanli, 2017 | 0.76 | 0.13 | 68 | 0.27 | 0.15 | 30 | 4.4% | 0.49 [0.43, 0.55] | |
Ye, 2018 | 1.8 | 0.461 | 105 | 1.46 | 0.41 | 41 | 4.0% | 0.34 [0.19, 0.49] | |
Cengiz, 2018 | 0.21 | 0.477 | 44 | 0.155 | 1.32 | 44 | 2.2% | 0.05 [−0.36, 0.47] | |
Kunos, 2018 | 0.63 | 1.3 | 45 | 0.28 | 0.24 | 31 | 2.3% | 0.35 [−0.04, 0.74] | |
Bozkus, 2018 | 3.72 | 1.36 | 167 | 3.12 | 0.62 | 39 | 3.0% | 0.60 [0.32, 0.88] | |
Bhatt, 2019 | 3.6 | 1.5 | 47 | 1.4 | 0.7 | 25 | 1.7% | 2.20 [1.69, 2.71] | |
Voulgaris, 2019 | 0.55 | 0.58 | 64 | 0.34 | 0.36 | 32 | 3.7% | 0.21 [0.02, 0.40] | |
Li, 2019 | 0.321 | 0.239 | 77 | 0.252 | 0.431 | 23 | 3.7% | 0.07 [−0.12, 0.25] | |
Düger, 2020 | 0.277 | 0.244 | 86 | 0.187 | 0.192 | 83 | 4.4% | 0.09 [0.02, 0.16] | |
Winiarska, 2020 | 0.165 | 0.122 | 48 | 0.093 | 0.059 | 16 | 4.5% | 0.07 [0.03, 0.12] | |
Pákó, 2020 | 10.3 | 22.7 | 41 | 4.5 | 12.1 | 21 | 0.0% | 5.80 [−2.86, 14.46] | |
Total (95% CI) | 2652 | 1315 | 100.0% | 0.36 [0.28, 0.45] | |||||
Heterogeneity: Tau2 = 0.04; Chi2 = 859.49, df = 31 (p < 0.00001); I2 = 96%; Test for overall effect: Z = 8.36 (p < 0.00001) |
Variable | Studies | OSA | Control | Weight | Mean Difference IV, Random, 95% CI | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Total | Mean | SD | Total | ||||
Plasma hs-CRP | Kim, 2010 [4] | 1.75 | 2.26 | 140 | 1.16 | 1.57 | 115 | 17.1% | 0.59 [0.12, 1.06] |
Khalyfa, 2012 [132] | 2.7 | 4.2 | 131 | 1.8 | 3.4 | 323 | 15.4% | 0.90 [0.09, 1.71] | |
Iannuzzi, 2013 [134] | 0.258 | 0.367 | 19 | 0.098 | 0.495 | 25 | 17.9% | 0.16 [−0.09, 0.41] | |
Kim, 2013 [133] | 1.54 | 1.8 | 62 | 0.96 | 1.27 | 44 | 16.6% | 0.58 [−0.00, 1.16] | |
Kheirandish-Gozal, 2014 [137] | 4.13 | 3.82 | 110 | 0.775 | 0.638 | 109 | 15.9% | 3.35 [2.63, 4.08] | |
Gozal, 2014 [136] | 3.1 | 2.1 | 138 | 1.53 | 1.59 | 88 | 17.1% | 1.57 [1.09, 2.05] | |
Total (95% CI) | 600 | 704 | 100.0% | 1.17 [0.35, 1.98] | |||||
Heterogeneity: Tau2 = 0.95; Chi2 = 82.02, df = 5 (p < 0.00001); I2 = 94%; Test for overall effect: Z = 2.80 (p = 0.005) | |||||||||
Serum hs-CRP | Huang, 2016 [139] | 0.19 | 0.044 | 47 | 0.041 | 0.48 | 32 | 21.7% | 0.15 [−0.02, 0.32] |
Israel, 2013 [135] | 0.45 | 0.21 | 25 | 0.15 | 0.1 | 24 | 25.1% | 0.30 [0.21, 0.39] | |
Kheirandish-Gozal, 2010 [137] | 0.29 | 0.17 | 80 | 0.04 | 0.07 | 20 | 26.4% | 0.25 [0.20, 0.30] | |
Ye, 2015 [138] | 0.011 | 0.0021 | 25 | 0.0023 | 9.0 × 10−4 | 19 | 26.9% | 0.01 [0.01, 0.01] | |
Total (95% CI) | 177 | 95 | 100.0% | 0.18 [−0.00, 0.35] | |||||
Heterogeneity: Tau2 = 0.03; Chi2 = 137.61, df = 3 (p < 0.00001); I2 = 98%; Test for overall effect: Z = 1.96 (p = 0.05) | |||||||||
Plasma hs-CRP | Kaditis, 2010 [129] | 0.213 | 0.336 | 84 | 0.13 | 0.16 | 22 | 100.0% | 0.08 [−0.02, 0.18] |
Total (95% CI) | 84 | 22 | 100.0% | 0.08 [−0.02, 0.18] | |||||
Heterogeneity: Not applicable; Test for overall effect: Z = 1.66 (p = 0.10) | |||||||||
Serum hs-CRP | Canapari, 2011 [131] | 0.557 | 0.558 | 15 | 0.382 | 0.195 | 16 | 7.9% | 0.18 [−0.12, 0.47] |
Smith, 2017 [3] | 0.11 | 0.2 | 78 | 0.08 | 0.28 | 53 | 92.1% | 0.03 [−0.06, 0.12] | |
Total (95% CI) | 93 | 69 | 100.0% | 0.04 [−0.04, 0.13] | |||||
Heterogeneity: Chi2 = 0.84, df = 1 (p = 0.36); I2 = 0%; Test for overall effect: Z = 0.97 (p = 0.33) |
Subgroup Analysis of Plasma Level (N) | MD (95% CI), p-Value, I2 (%), ph | Subgroup Analysis of Serum Level (N) | MD (95% CI), p-Value, I2 (%), ph |
---|---|---|---|
Overall (11) | Overall (44) | ||
Ethnicity | Ethnicity | ||
Caucasian (3) | 0.10 (0.03, 0.18), 0.004, 80 (0.007) | Caucasian (21) | 0.18 (0.11, 0.23), <0.00001, 92 (<0.00001) |
Asian (6) | 0.12 (0.05, 0.18), 0.0003, 89 (<0.00001) | Asian (21) | 0.08 (0.06, 0.10), <0.00001, 93 (<0.00001) |
Mixed (2) | 0.24 (−0.41, 0.90), 0.47, 92 (0.0003) | Mixed (2) | 0.05 (−0.04, 0.14), 0.28, 88 (0.004) |
Mean BMI of OSA patients, kg/m2 | Mean BMI of OSA patients, kg/m2 | ||
>30 (4) | 0.10 (−0.04, 0.24), 0.15, 79, (0.003) | >30 (19) | 0.18 (0.09, 0.27), <0.0001, 92 (<0.00001) |
≤30 (6) | 0.11 (0.05, 0.17), 0.0003, 92 (<0.00001) | ≤30 (25) | 0.08 (0.06, 0.10), <0.00001, 93 (<0.00001) |
Mean BMI of controls, kg/m2 | Mean BMI of controls, kg/m2 | ||
>30 (3) | 0.15 (−0.13, 0.43), 0.30, 85 (0.001) | >30 (12) | 0.11 (0.04, 0.19), 0.004, 85 (<0.00001) |
≤30 (7) | 0.11 (0.05, 0.16), <0.0001, 91 (<0.00001) | ≤30 (32) | 0.09 (0.07, 0.11), <0.00001, 94 (<0.00001) |
Total number of participants | Total number of participants | ||
>100 (3) | 0.14 (0.00, 0.27), 0.04, 85 (0.001) | >100 (20) | 0.10 (0.08, 0.13), <0.00001, 86 (<0.00001) |
≤100 (8) | 0.11 (0.05, 0.17), 0.0002, 91 (<0.00001) | ≤100 (24) | 0.08 (0.06, 0.11), <0.00001, 93 (<0.00001) |
Mean AHI of OSA patients, events/h | Mean AHI of OSA patients, events/h | ||
>30 (4) | 0.14 (0.02, 0.26), 0.02, 81 (0.001) | >30 (21) | 0.11 (0.08, 0.14), <0.00001, 92 (<0.00001) |
≤30 (4) | 0.10 (0.02, 0.18), 0.01, 84 (0.0003) | ≤30 (23) | 0.07 (0.05, 0.09), <0.00001, 88 (<0.00001) |
Subgroup Analysis of Plasma Level (N) | MD (95% CI), p-Value, I2 (%), ph | Subgroup Analysis of Serum Level (N) | MD (95% CI), p-Value, I2 (%), ph |
---|---|---|---|
Overall (9) | 0.06 (−0.24, 0.36), 0.72, 99 (<0.00001) | Overall (32) | 0.36 (0.28, 0.45), <0.00001, 96 (<0.00001) |
Ethnicity | Ethnicity | ||
Caucasian (7) | 0.22 (−0.28, 0.71), 0.39, 99 (<0.00001) | Caucasian (21) | 0.38 (0.27, 0.50), <0.00001, 95 (<0.00001) |
Asian (2) | 0.21 (−0.10, 0.52), 0.18, 81 (0.02) | Asian (9) | 0.38 (0.23, 0.54), <0.00001, 98 (<0.00001) |
Mixed (0) | - | Mixed (2) | 0.06 (−0.07, 0.18), 0.37, 0 (0.72) |
Mean BMI of OSA patients, kg/m2 | Mean BMI of OSA patients, kg/m2 | ||
>30 (5) | 0.95 (0.47, 1.44), 0.0001, 99 (<0.00001) | >30 (16) | 0.31 (0.21, 0.42), <0.00001, 92 (<0.00001) |
≤30 (4) | −0.88 (−1.48, −0.27), 0.004, 99 (<0.00001) | ≤30 (16) | 0.41 (0.28, 0.55), <0.00001, 98 (<0.00001) |
Mean BMI of controls, kg/m2 | Mean BMI of controls, kg/m2 | ||
>30 (0) | - | >30 (7) | 0.61 (0.23, 1.00), 0.002, 92 (<0.00001) |
≤30 (9) | 0.06 (−0.24, 0.36), 0.72, 99 (<0.00001) | ≤30 (25) | 0.35 (0.26, 0.44), <0.00001, 97 (<0.00001) |
Total number of participants | Total number of participants | ||
>100 (3) | −1.43 (−3.34, 0.48), 0.14, 99 (<0.00001) | >100 (12) | 0.21 (0.09, 0.32), 0.0003, 97 (<0.000001) |
≤100 (6) | 0.69 (0.32, 1.05), 0.0003, 98 (<0.00001) | ≤100 (20) | 0.53 (0.39, 0.67), <0.00001, 96 (<0.00001) |
Mean AHI of OSA patients, events/h | Mean AHI of OSA patients, events/h | ||
>30 (4) | 1.64 (−0.63, 3.92), 0.16, 99 (<0.00001) | >30 (13) | 0.54 (0.36, 0.72), <0.00001, 96 (<0.00001) |
≤30 (5) | 0.18 (0.02, 0.34), 0.02, 96 (<0.00001) | ≤30 (19) | 0.27 (0.17, 0.37), <0.00001, 96 (<0.00001) |
Year of Publication | R | Adjusted R2 | p | Mean Age of OSA Patients | R | Adjusted R2 | p | Mean Age of Controls | R | Adjusted R2 | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Plasma | 0.315 | −0.001 | 0.346 | Plasma | 0.357 | 0.019 | 0.311 | Plasma | 0.226 | −0.068 | 0.531 |
Serum | 0.062 | −0.020 | 0.691 | Serum | 0.041 | −0.022 | 0.790 | Serum | 0.002 | −0.024 | 0.989 |
Mean BMI of OSA Patients | R | Adjusted R2 | p | Mean BMI of Controls | R | Adjusted R2 | p | Mean AHI of OSA Patients | R | Adjusted R2 | p |
Plasma | 0.147 | −0.101 | 0.686 | Plasma | 0.222 | −0.069 | 0.537 | Plasma | 0.130 | −0.147 | 0.759 |
Serum | 0.054 | −0.021 | 0.726 | Serum | 0.010 | −0.024 | 0.946 | Serum | 0.433 | 0.160 | 0.013 |
Number of Participants | R | Adjusted R2 | p | ||||||||
Plasma | 0.298 | −0.013 | 0.374 | ||||||||
Serum | 0.076 | −0.018 | 0.626 |
Year of Publication | R | Adjusted R2 | p | Mean Age of OSA Patients | R | Adjusted R2 | p | Mean Age of Controls | R | Adjusted R2 | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Plasma | 0.504 | 0.147 | 0.166 | Plasma | 0.039 | −0.141 | 0.920 | Plasma | 0.113 | −0.128 | 0.772 |
Serum | 0.187 | 0.003 | 0.306 | Serum | 0.116 | −0.020 | 0.533 | Serum | 0.066 | −0.030 | 0.724 |
Mean BMI of OSA Patients | R | Adjusted R2 | p | Mean BMI of Controls | R | Adjusted R2 | p | Mean AHI of OSA Patients | R | Adjusted R2 | p |
Plasma | 0.235 | −0.080 | 0.543 | Plasma | 0.294 | −0.044 | 0.443 | Plasma | 0.316 | −0.029 | 0.408 |
Serum | 0.042 | −0.032 | 0.820 | Serum | 0.058 | −0.030 | 0.754 | Serum | 0.332 | 0.068 | 0.121 |
Number of Participants | R | Adjusted R2 | p | ||||||||
Plasma | 0.403 | 0.043 | 0.282 | ||||||||
Serum | 0.178 | −0.001 | 0.331 |
The First Author, Year | Selection | Comparability | Exposure | Total Points |
---|---|---|---|---|
Adults | ||||
Shamsuzzaman, 2002 [33] | *** | ** | *** | 8 |
Teramoto, 2003 [34] | ** | * | *** | 6 |
Yokoe, 2003 [35] | *** | ** | *** | 8 |
Barceló, 2004 [36] | *** | ** | *** | 8 |
Guilleminault, 2004 [37] | **** | * | *** | 8 |
Minoguchi, 2005 [38] | *** | ** | *** | 8 |
Can, 2006 [39] | *** | ** | *** | 8 |
Minoguchi, 2006 [40] | *** | ** | *** | 8 |
Shiina, 2006 [41] | **** | ** | *** | 9 |
Ryan, 2007 [42] | *** | ** | *** | 8 |
Chung, 2007 [43] | *** | ** | *** | 8 |
Iesato, 2007 [44] | **** | ** | *** | 9 |
Minoguchi, 2007 [45] | **** | ** | *** | 9 |
Jin, 2007 [46] | *** | ** | *** | 8 |
Kapsimalis, 2008 [47] | **** | ** | *** | 9 |
Saletu, 2008 [48] | *** | ** | *** | 8 |
Sharma, 2008 [49] | **** | ** | *** | 9 |
Takahashi, 2008 [50] | *** | ** | *** | 8 |
Bhushan, 2009 [51] | *** | ** | *** | 8 |
Carneiro, 2009 [52] | *** | ** | *** | 8 |
Cofta, 2009 [53] | *** | ** | *** | 8 |
Makino, 2009 [54] | *** | ** | *** | 8 |
Sahlman, 2010 [55] | *** | ** | *** | 8 |
Aihara, 2011 [56] | *** | * | *** | 8 |
Barceló, 2011 [57] | *** | ** | *** | 8 |
Basoglu, 2011 [58] | *** | ** | *** | 8 |
Fredheim, 2011 [59] | *** | * | *** | 8 |
Guasti, 2011 [60] | **** | ** | *** | 9 |
Kanbay, 2011 [61] | *** | ** | *** | 8 |
Kasai, 2011 [62] | *** | * | *** | 7 |
Balci, 2012 [63] | *** | ** | *** | 8 |
Chien, 2012 [64] | *** | ** | *** | 8 |
Feng, 2012 [65] | *** | ** | *** | 8 |
Fornadi, 2012 [66] | *** | ** | *** | 8 |
Guven, 2012 [67] | *** | ** | *** | 8 |
Panoutsopoulos, 2012 [68] | *** | ** | *** | 8 |
Chen, 2013 [69] | *** | * | *** | 7 |
Kosacka, 2013 [70] | *** | ** | *** | 8 |
Wang, 2013 [71] | *** | ** | *** | 8 |
Zhang, 2013 [72] | *** | ** | *** | 8 |
Akilli, 2014 [73] | *** | ** | *** | 8 |
Ciccone, 2014 [74] | *** | ** | *** | 8 |
Li, 2014 [75] | *** | ** | *** | 8 |
Niżankowska-Jędrzejczyk, 2014 [76] | *** | ** | *** | 8 |
Shi, 2014 [77] | *** | ** | *** | 8 |
Sökücü, 2014 [78] | *** | * | *** | 7 |
Yadav, 2014 [79] | **** | ** | *** | 9 |
Yüksel, 2014 [80] | *** | * | *** | 7 |
Abakay, 2015 [81] | *** | ** | *** | 8 |
Andaku, 2015 [82] | *** | ** | *** | 8 |
da Silva Araújo, 2015 [83] | *** | ** | *** | 8 |
Asker, 2015 [84] | *** | - | *** | 6 |
Bakırcı, 2015 [85] | *** | ** | *** | 8 |
Kanbay, 2015 [81] | *** | ** | *** | 8 |
Korkmaz, 2015 [86] | *** | ** | *** | 8 |
Xu, 2015 [87] | *** | ** | *** | 8 |
Altintas, 2016 [88] | *** | ** | *** | 8 |
Archontogeorgis, 2016 [89] | *** | ** | *** | 8 |
Borratynska, 2016 [90] | **** | ** | *** | 9 |
Can, 2016 [91] | *** | ** | *** | 8 |
Cao, 2016 [92] | *** | ** | *** | 8 |
Kim, 2016 [93] | *** | ** | *** | 8 |
Qi, 2016 [94] | *** | ** | *** | 8 |
Tanrıverdi, 2016 [95] | *** | ** | *** | 8 |
Tie, 2016 [96] | *** | ** | *** | 8 |
Vicente, 2016 [97] | *** | ** | *** | 8 |
Uygur, 2016 [98] | *** | ** | *** | 8 |
Zhang, 2016 [99] | *** | ** | *** | 8 |
Bouloukaki, 2017 [100] | *** | * | *** | 7 |
Gamsiz-Isik, 2017 [101] | *** | ** | *** | 8 |
Karamanli, 2017 [102] | *** | ** | *** | 8 |
Kosacka, 2017 [103] | *** | ** | *** | 8 |
Suliman, 2017 [104] | *** | ** | *** | 8 |
Xu, 2017 [105] | **** | ** | *** | 9 |
Bozic, 2018 [106] | *** | ** | *** | 8 |
Bozkus, 2018 [107] | *** | * | *** | 7 |
Cengiz, 2018 [108] | *** | ** | *** | 8 |
Horvath, 2018 [109] | *** | * | *** | 7 |
Kunos, 2018 [110] | *** | * | *** | 7 |
Ozkok, 2018 [111] | *** | ** | *** | 8 |
Ye, 2018 [112] | *** | ** | *** | 8 |
Zhang, 2018 [113] | *** | ** | *** | 8 |
Bhatt, 2019 [114] | *** | - | *** | 6 |
Jung, 2019 [115] | *** | ** | *** | 8 |
Li, 2019 [116] | *** | ** | *** | 8 |
Płóciniczak, 2019 [117] | *** | * | *** | 7 |
Voulgaris, 2019 [118] | *** | ** | *** | 8 |
Wang, 2019 [119] | *** | ** | *** | 8 |
Wen, 2019 [120] | *** | ** | *** | 8 |
Bocskei, 2020 [121] | *** | * | *** | 7 |
Chen, 2020 [122] | *** | ** | *** | 8 |
Chien, 2020 [123] | *** | ** | *** | 8 |
Düger, 2020 [124] | *** | ** | *** | 8 |
Pákó, 2020 [125] | *** | ** | *** | 8 |
Winiarska, 2020 [126] | *** | ** | *** | 8 |
Xie, 2020 [127] | *** | * | *** | 8 |
Zhang, 2020 [128] | **** | ** | *** | 9 |
Children | ||||
Kaditis, 2010 [129] | *** | * | *** | 7 |
Kheirandish-Gozal, 2010 [130] | *** | * | *** | 7 |
Kim, 2010 [4] | **** | * | *** | 8 |
Canapari, 2011 [131] | *** | * | *** | 7 |
Khalyfa, 2012 [132] | **** | ** | *** | 9 |
Kim, 2013 [133] | **** | ** | *** | 9 |
Iannuzzi, 2013 [134] | **** | ** | *** | 9 |
Israel, 2013 [135] | *** | ** | *** | 8 |
Gozal, 2014 [136] | **** | ** | *** | 9 |
Kheirandish-Gozal, 2014 [137] | **** | ** | *** | 9 |
Ye, 2015 [138] | *** | ** | *** | 8 |
Huang, 2016 [139] | *** | * | *** | 7 |
Smith, 2017 [3] | **** | ** | *** | 9 |
Biomarker | Sample | Value | Studies Trimmed | Fixed-Effects | Random-Effects | Q Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Point Estimate | Lower Limit | Upper Limit | Point Estimate | Lower Limit | Upper Limit | |||||
hs-CRP | Plasma | Observed | - | 0.11402 | 0.09794 | 0.13009 | 0.11531 | 0.06459 | 0.16603 | 70.45500 |
Adjusted | 0 | 0.11402 | 0.09794 | 0.13009 | 0.11531 | 0.06459 | 0.16603 | 70.45500 | ||
Serum | Observed | - | 0.04957 | 0.04690 | 0.05224 | 0.08898 | 0.06872 | 0.10924 | 887.14388 | |
Adjusted | 14 | 0.04878 | 0.04611 | 0.05144 | 0.05914 | 0.03838 | 0.07990 | 1122.18105 | ||
CRP | Plasma | Observed | - | 0.13087 | 0.09629 | 0.16545 | 0.10737 | −0.25635 | 0.47110 | 675.22529 |
Adjusted | 1 | 0.12546 | 0.09089 | 0.16004 | −0.31732 | −0.72147 | 0.08682 | 882.03388 | ||
Serum | Observed | - | 0.09409 | 0.07958 | 0.10861 | 0.30390 | 0.21652 | 0.39129 | 633.80855 | |
Adjusted | 13 | 0.05547 | 0.04154 | 0.06941 | 0.08310 | −0.01114 | 0.17735 | 1132.33477 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imani, M.M.; Sadeghi, M.; Farokhzadeh, F.; Khazaie, H.; Brand, S.; Dürsteler, K.M.; Brühl, A.; Sadeghi-Bahmani, D. Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta‐Analysis and Meta-Regression. Life 2021, 11, 362. https://doi.org/10.3390/life11040362
Imani MM, Sadeghi M, Farokhzadeh F, Khazaie H, Brand S, Dürsteler KM, Brühl A, Sadeghi-Bahmani D. Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta‐Analysis and Meta-Regression. Life. 2021; 11(4):362. https://doi.org/10.3390/life11040362
Chicago/Turabian StyleImani, Mohammad Moslem, Masoud Sadeghi, Farid Farokhzadeh, Habibolah Khazaie, Serge Brand, Kenneth M. Dürsteler, Annette Brühl, and Dena Sadeghi-Bahmani. 2021. "Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta‐Analysis and Meta-Regression" Life 11, no. 4: 362. https://doi.org/10.3390/life11040362
APA StyleImani, M. M., Sadeghi, M., Farokhzadeh, F., Khazaie, H., Brand, S., Dürsteler, K. M., Brühl, A., & Sadeghi-Bahmani, D. (2021). Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta‐Analysis and Meta-Regression. Life, 11(4), 362. https://doi.org/10.3390/life11040362