External Validation of the Briganti Nomogram to Predict Lymph Node Invasion in Prostate Cancer—Setting a New Threshold Value
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jassem, J.; Kordek, R. Onkologia; Via Medica: Gdansk, Poland, 2019. [Google Scholar]
- D’Amico, A.V.; Whittington, R.; Bruce Malkowicz, S.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. J. Am. Med. Assoc. 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M.; et al. Radical Prostatectomy versus Observation for Localized Prostate Cancer. N. Engl. J. Med. 2012, 367, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Bill-Axelson, A.; Holmberg, L.; Ruutu, M.; Garmo, H.; Stark, J.R.; Busch, C.; Nordling, S.; Häggman, M.; Andersson, S.O.; Bratell, S.; et al. Re: Radical prostatectomy versus watchful waiting in early prostate cancer. J. Urol. 2011, 186, 1708–1717. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, F.C.; Studer, U.E. The role of lymphadenectomy in high risk prostate cancer. World J. Urol. 2008, 26, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Masterson, T.A.; Bianco, F.J.; Vickers, A.J.; Diblasio, C.J.; Fearn, P.A.; Rabbani, F.; Eastham, J.A.; Scardino, P.T. The association between total and positive lymph node counts, and disease progression in clinically localized prostate cancer. J. Urol. 2006, 175, 1320–1325. [Google Scholar] [CrossRef] [Green Version]
- Touijer, K.; Rabbani, F.; Otero, J.R.; Secin, F.P.; Eastham, J.A.; Scardino, P.T.; Guillonneau, B. Standard Versus Limited Pelvic Lymph Node Dissection for Prostate Cancer in Patients with a Predicted Probability of Nodal Metastasis Greater Than 1%. J. Urol. 2007, 178, 120–124. [Google Scholar] [CrossRef]
- Briganti, A.; Blute, M.L.; Eastham, J.H.; Graefen, M.; Heidenreich, A.; Karnes, J.R.; Montorsi, F.; Studer, U.E. Pelvic Lymph Node Dissection in Prostate Cancer. Eur. Urol. 2009, 55, 1251–1265. [Google Scholar] [CrossRef]
- Briganti, A.; Chun, F.K.H.; Salonia, A.; Zanni, G.; Scattoni, V.; Valiquette, L.; Rigatti, P.; Montorsi, F.; Karakiewicz, P.I. Validation of a Nomogram Predicting the Probability of Lymph Node Invasion among Patients Undergoing Radical Prostatectomy and an Extended Pelvic Lymphadenectomy. Eur. Urol. 2006, 49, 1019–1026. [Google Scholar] [CrossRef]
- Walz, J.; Bladou, F.; Rousseau, B.; Laroche, J.; Salem, N.; Gravis, G.; Briganti, A.; Chun, F.K.H.; Karakiewicz, P.I.; Fournier, G. Head to head comparison of nomograms predicting probability of lymph node invasion of prostate cancer in patients undergoing extended pelvic lymph node dissection. Urology 2012, 79, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Karakiewicz, P.I.; Suardi, N.; Kattan, M.W. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: A critical analysis of the literature. Clin. Cancer Res. 2008, 14, 4400–4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kattan, M.W. Factors affecting the accuracy of prediction models limit the comparison of rival prediction models when applied to separate data sets. Eur. Urol. 2011, 59, 566–567. [Google Scholar] [CrossRef] [PubMed]
- Budäus, L.; Spethmann, J.; Isbarn, H.; Schmitges, J.; Beesch, L.; Haese, A.; Salomon, G.; Schlomm, T.; Fisch, M.; Heinzer, H.; et al. Inverse stage migration in patients undergoing radical prostatectomy: Results of 8916 European patients treated within the last decade. BJU Int. 2011, 108, 1256–1261. [Google Scholar] [CrossRef]
- Gallina, A.; Chun, F.K.H.; Suardi, N.; Eastham, J.A.; Perrotte, P.; Graefen, M.; Hutterer, G.; Huland, H.; Klein, E.A.; Reuther, A.; et al. Comparison of stage migration patterns between Europe and the USA: An analysis of 11 350 men treated with radical prostatectomy for prostate cancer. BJU Int. 2008, 101, 1513–1518. [Google Scholar] [CrossRef]
- Venclovas, Z.; Muilwijk, T.; Matjosaitis, A.J.; Jievaltas, M.; Joniau, S.; Milonas, D. Head-to-Head Comparison of Two Nomograms Predicting Probability of Lymph Node Invasion in Prostate Cancer and the Therapeutic Impact of Higher Nomogram Threshold. J. Clin. Med. 2021, 10, 999. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed; The Union for International Cancer Control: Geneva, Switzerland, 2017. [Google Scholar]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Gleason, D.F.; Mellinger, G.T.; Ardving, L.J. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 1974, 111, 58–64. [Google Scholar] [CrossRef]
- McNeal, J.E.; Redwine, E.A.; Freiha, F.S.; Stamey, T.A. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am. J. Surg. Pathol. 1988, 12, 897–906. [Google Scholar] [CrossRef]
- Greene, K.L.; Page, D.L.; Fleming, I.D. AJCC Cancer Staging Manual, 6th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Briganti, A.; Joniau, S.; Gontero, P.; Abdollah, F.; Passoni, N.M.; Tombal, B.; Marchioro, G.; Kneitz, B.; Walz, J.; Frohneberg, D.; et al. Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer. Eur. Urol. 2012, 61, 584–592. [Google Scholar] [CrossRef]
- Steuber, T.; Schlomm, T.; Heinzer, H.; Zacharias, M.; Ahyai, S.; Chun, K.F.; Haese, A.; Klutmann, S.; Köllermann, J.; Sauter, G.; et al. [F18]-fluoroethylcholine combined in-line PET-CT scan for detection of lymph-node metastasis in high risk prostate cancer patients prior to radical prostatectomy: Preliminary results from a prospective histology-based study. Eur. J. Cancer 2010, 46, 449–455. [Google Scholar] [CrossRef]
- Briganti, A.; Larcher, A.; Abdollah, F.; Capitanio, U.; Gallina, A.; Suardi, N.; Bianchi, M.; Sun, M.; Freschi, M.; Salonia, A.; et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: The essential importance of percentage of positive cores. Eur. Urol. 2012, 61, 480–487. [Google Scholar] [CrossRef]
- Heidenreich, A.; Bellmunt, J.; Bolla, M.; Joniau, S.; Mason, M.; Matveev, V.; Mottet, N.; Schmid, H.P.; Van Der Kwast, T.; Wiegel, T.; et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and treatment of clinically localised disease. Eur. Urol. 2011, 59, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.J.; Gerharz, E.W.; Ramaswamy, A.; Riedmiller, H. The influence of lymph node counts on the detection of pelvic lymph node metastasis in prostate cancer. Pathol. Res. Pract. 1999, 195, 633–636. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, Y.; Cheng, Y.; Qi, F.; Zou, Q. Whether extended pelvic lymph node dissection should be performed in prostate cancer: The present evidence from a systematic review and meta-analysis. Precis. Med. Sci. 2020, 9, 23–30. [Google Scholar] [CrossRef]
- Godoy, G.; Chong, K.T.; Cronin, A.; Vickers, A.; Laudone, V.; Touijer, K.; Guillonneau, B.; Eastham, J.A.; Scardino, P.T.; Coleman, J.A. Extent of pelvic lymph node dissection and the impact of standard template dissection on nomogram prediction of lymph node involvement. Eur. Urol. 2011, 60, 195–201. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Cagiannos, I.; Karakiewicz, P.; Eastham, J.A.; Ohori, M.; Rabbani, F.; Gerigk, C.; Reuter, V.; Graefen, M.; Hammerer, P.G.; Erbersdobler, A.; et al. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J. Urol. 2003, 170, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Ploussard, G.; Valerio, M.; Mattei, A.; Fiori, C.; Fossati, N.; Stabile, A.; Beauval, J.B.; Malavaud, B.; Roumiguié, M.; et al. A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies. Eur. Urol. 2019, 75, 506–514. [Google Scholar] [CrossRef]
- Fossati, N.; Willemse, P.P.M.; Van den Broeck, T.; van den Bergh, R.C.N.; Yuan, C.Y.; Briers, E.; Bellmunt, J.; Bolla, M.; Cornford, P.; De Santis, M.; et al. The Benefits and Harms of Different Extents of Lymph Node Dissection During Radical Prostatectomy for Prostate Cancer: A Systematic Review. Eur. Urol. 2017, 72, 84–109. [Google Scholar] [CrossRef]
- Fujimoto, N.; Shiota, M.; Tomisaki, I.; Minato, A.; Yahara, K. Reconsideration on clinical benefit of pelvic lymph node dissection during radical prostatectomy for clinically localized prostate cancer. Urol. Int. 2019, 103, 125–136. [Google Scholar] [CrossRef]
- Di Pierro, G.B.; Grande, P.; Wirth, J.G.; Danuser, H.; Mattei, A. Extended pelvic lymph node dissection at the time of robot-assisted radical prostatectomy: Impact of surgical volume on efficacy and complications in a single-surgeon series. J. Can. Urol. Assoc. 2015, 9, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Diamand, R.; Oderda, M.; Albisinni, S.; Fourcade, A.; Fournier, G.; Benamran, D.; Iselin, C.; Fiard, G.; Descotes, J.L.; Assenmacher, G.; et al. External validation of the Briganti nomogram predicting lymph node invasion in patients with intermediate and high-risk prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies: A European multicenter study. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 847.e9–847.e16. [Google Scholar] [CrossRef]
- Hansen, J.; Rink, M.; Bianchi, M.; Kluth, L.A.; Tian, Z.; Ahyai, S.A.; Shariat, S.F.; Briganti, A.; Steuber, T.; Fisch, M.; et al. External validation of the updated briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection. Prostate 2013, 73, 211–218. [Google Scholar] [CrossRef]
- Mohler, J.; Armstrong, A.; Bahnson, R.; D’Amico, A. NCCN clinical practice guidelines in oncology: Prostate cancer. J. Natl. Compr. Cancer Netw. 2010, 8, 162–200. [Google Scholar] [CrossRef] [PubMed]
- Chun, F.K.H.; Briganti, A.; Graefen, M.; Porter, C.; Montorsi, F.; Haese, A.; Scattoni, V.; Borden, L.; Steuber, T.; Salonia, A.; et al. Development and External Validation of an Extended Repeat Biopsy Nomogram. J. Urol. 2007, 177, 510–515. [Google Scholar] [CrossRef]
- Mazzola, C.; Savage, C.; Ahallal, Y.; Reuter, V.E.; Eastham, J.A.; Scardino, P.T.; Guillonneau, B.; Touijer, K.A. Nodal counts during pelvic lymph node dissection for prostate cancer: An objective indicator of quality under the influence of very subjective factors. BJU Int. 2012, 109, 1323–1328. [Google Scholar] [CrossRef]
- Feifer, A.H.; Elkin, E.B.; Lowrance, W.T.; Denton, B.; Jacks, L.; Yee, D.S.; Coleman, J.A.; Laudone, V.P.; Scardino, P.T.; Eastham, J.A. Temporal trends and predictors of pelvic lymph node dissection in open or minimally invasive radical prostatectomy. Cancer 2011, 117, 3933–3942. [Google Scholar] [CrossRef]
- Prasad, S.M.; Keating, N.L.; Wang, Q.; Pashos, C.L.; Lipsitz, S.; Richie, J.P.; Hu, J.C. Variations in Surgeon Volume and Use of Pelvic Lymph Node Dissection with Open and Minimally Invasive Radical Prostatectomy. Urology 2008, 72, 652–653. [Google Scholar] [CrossRef]
- Briganti, A.; Capitanio, U.; Chun, F.K.H.; Gallina, A.; Suardi, N.; Salonia, A.; Da Pozzo, L.F.; Colombo, R.; Di Girolamo, V.; Bertini, R.; et al. Impact of Surgical Volume on the Rate of Lymph Node Metastases in Patients Undergoing Radical Prostatectomy and Extended Pelvic Lymph Node Dissection for Clinically Localized Prostate Cancer. Eur. Urol. 2008, 54, 794–802. [Google Scholar] [CrossRef]
- Mattei, A.; Fuechsel, F.G.; Bhatta Dhar, N.; Warncke, S.H.; Thalmann, G.N.; Krause, T.; Studer, U.E. The Template of the Primary Lymphatic Landing Sites of the Prostate Should Be Revisited: Results of a Multimodality Mapping Study. Eur. Urol. 2008, 53, 118–125. [Google Scholar] [CrossRef] [PubMed]
Comparison between Primary and Current Study Cohorts: | Comparison within Study Cohort: | |||||
---|---|---|---|---|---|---|
Primary (2006–2010) [25] | Current (2012–2018) | p | LNI (−) | LNI (+) | p | |
No (%) | 588 (–) | 222 (–) | 169 (76.1) | 53 (23.9) | ||
Age, years | ||||||
Median | 66 | 65 | <0.001 | 64 | 66 | 0.045 |
IQR | 60–70 | 60–68 | 59–68 | 62–70 | ||
PSA, ng/mL | ||||||
Median | 6.3 | 13.6 | <0.001 | 12.2 | 24.0 | <0.001 |
IQR | 4.8–8.9 | 7.6–21.1 | 7.2–17.6 | 12.7–33.8 | ||
No. of biopsy cores taken | ||||||
Median | 17 | 12 | <0.001 | 12 | 12 | 0.639 |
IQR | 13–24 | 12–12 | 12–12 | 10–12 | ||
No. of positive biopsy cores | ||||||
Median | 6 | 5 | <0.001 | 5 | 6 | 0.001 |
IQR | 3–10 | 3–8 | 3–7 | 4–10 | ||
Perc. of positive biopsy cores | ||||||
Median | 36 | 42 | 0.296 | 42 | 50 | <0.001 |
IQR | 17–61 | 25–66 | 25–58 | 33–91 | ||
Clinical stage: | ||||||
T1 | 373 (63.4) | 10 (4.5) | <0.001 | 8 (4.7) | 2 (3.8) | <0.001 |
T2 | 184 (31.3) | 168 (75.7) | 139 (82.2) | 29 (54.7) | ||
T3 | 31 (5.3) | 44 (19.8) | 22 (13.1) | 22 (41.5) | ||
Primary biopsy Gleason pattern: | ||||||
≤3 | 488 (83.0) | 155 (69.8) | <0.001 | 130 (76.9) | 25 (47.2) | <0.001 |
≥4 | 100 (17.0) | 67 (30.2) | 39 (23.1) | 28 (52.8) | ||
Secondary biopsy Gleason pattern: | ||||||
≤3 | 406 (69.0) | 157 (70.7) | 0.707 | 132 (78.1) | 25 (47.2) | <0.001 |
≥4 | 182 (31.0) | 65 (29.3) | 37 (21.9) | 28 (52.8) | ||
Clinical risk classification: | ||||||
Low | 16 (7.8) | 15 (9.6) | 1 (2.0) | <0.001 | ||
Intermediate | 45 (22.0) | 44 (28.2) | 1 (2.0) | |||
High | 144 (70.2) | 97 (62.2) | 47 (96.0) | |||
Pathological stage: | ||||||
T2 | 431 (73.3) | 108 (48.6) | <0.001 | 103 (60.9) | 5 (9.4) | <0.001 |
T3a | 97 (16.5) | 48 (21.6) | 33 (19.5) | 15 (28.3) | ||
T3b | 58 (9.9) | 66 (29.7) | 33 (19.5) | 33 (62.3) | ||
T4 | 2 (0.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
Pathological primary Gleason pattern: | ||||||
≤3 | 141 (63.5) | 119 (70.4) | 25 (47.2) | 0.003 | ||
≥4 | 81 (36.5) | 50 (29.6) | 28 (52.8) | |||
Pathological secondary Gleason pattern: | ||||||
≤3 | 142 (64.0) | 119 (70.4) | 23 (43.4) | <0.001 | ||
≥4 | 80 (36.0) | 50 (29.6) | 30 (56.6) | |||
Number of positive lymph nodes | ||||||
Median | 2 | 2 | <0.001 | 0 | 2 | <0.001 |
IQR | 1–3 | 1–5 | 0–0 | 1–5 | ||
Number of lymph nodes removed | ||||||
Median | 19 | 16 | <0.001 | 15 | 20 | <0.001 |
IQR | 15–25 | 12–21 | 10–20 | 16–26 | ||
Biopsy Gleason Grading Group | ||||||
1 | 76 (34.2) | 64 (37.9) | 12 (22.7) | <0.001 | ||
2 | 52 (23.4) | 46 (27.2) | 6 (11.3) | |||
3 | 29 (13.1) | 22 (13.0) | 7 (13.2) | |||
4–5 | 65 (29.3) | 37 (21.9) | 28 (52.8) | |||
Pathological Gleason Grading Group | ||||||
1 | 26 (11.7) | 26 (15.4) | 0 (0.0) | <0.001 | ||
2 | 58 (26.1) | 49 (29.0) | 9 (17.0) | |||
3 | 58 (26.1) | 44 (26.0) | 14 (26.4) | |||
4–5 | 80 (36.1) | 50 (29.6) | 30 (56.6) |
Cut-off, % | TN + FN | TN | FN | TP + FP | FP | TP | NPV | PPV | TPR | TNR |
---|---|---|---|---|---|---|---|---|---|---|
1 | 6 (3.6) | 6 (3.6) | 0 (0) | 216 (97.3) | 163 (96.4) | 53 (100) | 100 | 24.5 | 100 | 3.6 |
2 | 34 (15.3) | 32 (18.9) | 2 (3.8) | 188 (84.7) | 137 (81.1) | 51 (96.2) | 94.1 | 27.1 | 96.2 | 18.9 |
3 | 54 (24.3) | 48 (28.4) | 6 (11.3) | 168 (75.7) | 121 (71.6) | 47 (88.7) | 88.9 | 28.0 | 88.7 | 28.4 |
4 | 73 (32.9) | 64 (37.9) | 9 (17.0) | 150 (67.6) | 106 (62.7) | 44 (83.0) | 97.4 | 29.3 | 83.0 | 37.6 |
5 | 77 (34.7) | 68 (40.2) | 9 (17.0) | 145 (65.3) | 101 (59.8) | 44 (83.0) | 97.2 | 30.3 | 83.0 | 40.2 |
6 | 85 (38.3) | 75 (44.4) | 10 (18.9) | 137 (61.7) | 94 (55.6) | 43 (81.1) | 96.9 | 31.4 | 81.1 | 44.4 |
7 | 95 (42.8) | 85 (50.3) | 10 (18.9) | 127 (57.2) | 84 (49.7) | 43 (81.1) | 96.3 | 33.9 | 81.1 | 50.3 |
8 | 101 (45.5) | 90 (53.3) | 11 (20.8) | 121 (54.5) | 79 (46.7) | 42 (79.2) | 95.6 | 34.7 | 79.2 | 53.3 |
9 | 108 (48.6) | 95 (56.2) | 13 (24.5) | 114 (51.4) | 74 (43.8) | 40 (75.5) | 96.3 | 35.1 | 75.5 | 56.2 |
10 | 112 (50.5) | 99 (58.6) | 13 (24.5) | 110 (49.5) | 70 (41.4) | 40 (75.5) | 95.0 | 36.4 | 75.5 | 58.6 |
15 | 133 (59.9) | 118 (69.8) | 15 (28.3) | 89 (40.1) | 51 (30.2) | 38 (71.7) | 93.7 | 42.7 | 71.7 | 69.8 |
20 | 154 (69.4) | 134 (79.3) | 20 (37.7) | 68 (30.6) | 35 (20.7) | 33 (62.3) | 93.3 | 48.5 | 62.3 | 79.3 |
25 | 170 (76.6) | 145 (85.8) | 25 (47.2) | 51 (23.0) | 24 (14.2) | 27 (50.9) | 92.5 | 52.9 | 51.9 | 85.8 |
30 | 179 (80.6) | 152 (89.9) | 27 (50.9) | 43 (19.4) | 17 (10.1) | 26 (49.1) | 91.6 | 60.5 | 49.1 | 89.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małkiewicz, B.; Ptaszkowski, K.; Knecht, K.; Gurwin, A.; Wilk, K.; Kiełb, P.; Dudek, K.; Zdrojowy, R. External Validation of the Briganti Nomogram to Predict Lymph Node Invasion in Prostate Cancer—Setting a New Threshold Value. Life 2021, 11, 479. https://doi.org/10.3390/life11060479
Małkiewicz B, Ptaszkowski K, Knecht K, Gurwin A, Wilk K, Kiełb P, Dudek K, Zdrojowy R. External Validation of the Briganti Nomogram to Predict Lymph Node Invasion in Prostate Cancer—Setting a New Threshold Value. Life. 2021; 11(6):479. https://doi.org/10.3390/life11060479
Chicago/Turabian StyleMałkiewicz, Bartosz, Kuba Ptaszkowski, Klaudia Knecht, Adam Gurwin, Karol Wilk, Paweł Kiełb, Krzysztof Dudek, and Romuald Zdrojowy. 2021. "External Validation of the Briganti Nomogram to Predict Lymph Node Invasion in Prostate Cancer—Setting a New Threshold Value" Life 11, no. 6: 479. https://doi.org/10.3390/life11060479
APA StyleMałkiewicz, B., Ptaszkowski, K., Knecht, K., Gurwin, A., Wilk, K., Kiełb, P., Dudek, K., & Zdrojowy, R. (2021). External Validation of the Briganti Nomogram to Predict Lymph Node Invasion in Prostate Cancer—Setting a New Threshold Value. Life, 11(6), 479. https://doi.org/10.3390/life11060479