Acute Effects on Impact Accelerations Running with Objects in the Hand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fields, K.B.; Sykes, J.C.; Walker, K.M.; Jackson, J.C. Prevention of running injuries. Curr. Sports Med. Rep. 2010, 9, 176–182. [Google Scholar] [CrossRef]
- Hespanhol Junior, L.C.; Pillay, J.D.; van Mechelen, W.; Verhagen, E. Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sport. Med. 2015, 45, 1455–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooms, L.; Veenhof, C.; de Bakker, D.H. Effectiveness of Start to Run, a 6-week training program for novice runners, on increasing health-enhancing physical activity: A controlled study. BMC Public Health 2013, 13, 697. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Di Gangi, S.; Rüst, C.; Rosemann, T.; Nikolaidis, P. Men’s participation and performance in the Boston Marathon from 1897 to 2017. Int. J. Sports Med. 2018, 39, 1018–1027. [Google Scholar] [CrossRef] [Green Version]
- Vitti, A.; Nikolaidis, P.T.; Villiger, E.; Onywera, V.; Knechtle, B. The “New York City Marathon”: Participation and performance trends of 1.2M runners during half-century. Res. Sports Med. 2020, 28, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Francis, P.; Whatman, C.; Sheerin, K.; Hume, P.; Johnson, M.I. The proportion of lower limb running injuries by gender, anatomical location and specific pathology: A systematic review. J. Sports Sci. Med. 2019, 18, 21–31. [Google Scholar] [PubMed]
- Hreljac, A. Etiology, prevention, and early intervention of overuse injuries in runners: A biomechanical perspective. Phys. Med. Rehabil. Clin. 2005, 16, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Bowser, B.J.; Fellin, R.; Milner, C.E.; Pohl, M.B.; Davis, I.S. Reducing impact loading in runners: A one-year follow-up. Med. Sci. Sports Exerc. 2018, 50, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- van der Worp, M.P.; ten Haaf, D.S.M.; van Cingel, R.; de Wijer, A.; Nijhuis-van der Sanden, M.W.G.; Staal, J.B. Injuries in runners; a systematic review on risk factors and sex differences. PLoS ONE 2015, 10, e0114937. [Google Scholar] [CrossRef]
- Cissik, J.M. Means and methods of speed training, part I. Strength Cond. J. 2004, 26, 24–29. [Google Scholar] [CrossRef]
- Pérez-Soriano, P.; Lucas-Cuevas, A.G.; Priego-Quesada, J.I.; Sanchis-Sanchis, R.; Cambronero-Resta, M.; Llana-Belloch, S.; Oficial-Casado, F.J.; Encarnación-Martínez, A. An 8-week running training program modifies impact accelerations during running. J. Athl. Enhanc. 2018, 7, 1–4. [Google Scholar] [CrossRef]
- Meyns, P.; Bruijn, S.M.; Duysens, J. The how and why of arm swing during human walking. Gait Posture 2013, 38, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Agresta, C.; Ward, C.R.; Wright, W.G.; Tucker, C.A. The effect of unilateral arm swing motion on lower extremity running mechanics associated with injury risk. Sport. Biomech. 2018, 17, 206–215. [Google Scholar] [CrossRef]
- Scheer, V.; Vieluf, S.; Bitter, N.; Christ, L.; Heitkamp, H.-C. The optimal weight carriage system for runners: Comparison between handheld water bottles, waist belts, and backpacks. Front. Physiol. 2020, 11, 1217. [Google Scholar] [CrossRef]
- Vincent, H.K.; Zdziarski, L.A.; Fallgatter, K.; Negron, G.; Chen, C.; Leavitt, T.; Horodyski, M.; Wasser, J.G.; Vincent, K.R. Running mechanics and metabolic responses with water bottles and bottle belt holders. Int. J. Sports Physiol. Perform. 2018, 13, 977–985. [Google Scholar] [CrossRef]
- Fowler, N.E.; Rodacki, A.L.F.; Rodacki, C.D. Changes in stature and spine kinematics during a loaded walking task. Gait Posture 2006, 23, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.S.; James, C.R.; Atkins, L.T.; Sawyer, S.F.; Sizer, P.S.; Kumar, N.A.; Kim, J. Effects of arm weight on gait performance in healthy subjects. Hum. Mov. Sci. 2018, 60, 40–47. [Google Scholar] [CrossRef]
- Lucas-Cuevas, A.G.; Encarnación-Martínez, A.; Camacho-García, A.; Llana-Belloch, S.; Pérez-Soriano, P. The location of the tibial accelerometer does influence impact acceleration parameters during running. J. Sports Sci. 2017, 35, 1734–1738. [Google Scholar] [CrossRef]
- Kawabata, M.; Goto, K.; Fukusaki, C.; Sasaki, K.; Hihara, E.; Mizushina, T.; Ishii, N. Acceleration patterns in the lower and upper trunk during running. J. Sports Sci. 2013, 31, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Mercer, J.A.; Bates, B.T.; Dufek, J.S.; Hreljac, A. Characteristics of shock attenuation during fatigued running. J. Sports Sci. 2003, 21, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Encarnación-Martínez, A.; García-Gallart, A.; Gallardo, A.M.; Sánchez-Sáez, J.A.; Sánchez-Sánchez, J. Effects of structural components of artificial turf on the transmission of impacts in football players. Sport. Biomech. 2018, 17, 251–260. [Google Scholar] [CrossRef]
- Encarnación-Martínez, A.; Pérez-Soriano, P.; Sanchis-Sanchis, R.; García-Gallart, A.; Berenguer-Vidal, R. Validity and reliability of an instrumented treadmill with an accelerometry system for assessment of spatio-temporal parameters and impact transmission. Sensors 2021, 21, 1758. [Google Scholar] [CrossRef]
- Derrick, T.R.; Dereu, D.; Mclean, S.P. Impacts and kinematic adjustments during an exhaustive run. Med. Sci. Sport. Exerc. 2002, 34, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.H.; Boyer, K.A.; Derrick, T.R.; Hamill, J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J. Sport Health Sci. 2014, 3, 113–121. [Google Scholar] [CrossRef]
- Milner, C.E.; Ferber, R.; Pollard, C.D.; Hamill, J.; Davis, I.S. Biomechanical factors associated with tibial stress fracture in female runners. Med. Sci. Sport. Exerc. 2006, 38, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Zifchock, R.A.; Davis, I.; Higginson, J.; McCaw, S.; Royer, T. Side-to-side differences in overuse running injury susceptibility: A retrospective study. Hum. Mov. Sci. 2008, 27, 888–902. [Google Scholar] [CrossRef] [PubMed]
- Encarnación-Martínez, A.; Pérez-Soriano, P.; Llana-Belloch, S. Differences in ground reaction forces and shock impacts between nordic walking and walking. Res. Q. Exerc. Sport 2015, 86, 94–99. [Google Scholar] [CrossRef]
- Liu, W.; Nigg, B.M. A mechanical model to determine the influence of masses and mass distribution on the impact force during running. J. Biomech. 2000, 33, 219–224. [Google Scholar] [CrossRef]
- Boey, H.; Aeles, J.; Schütte, K.; Vanwanseele, B. The effect of three surface conditions, speed and running experience on vertical acceleration of the tibia during running. Sport. Biomech. 2017, 16, 166–176. [Google Scholar] [CrossRef]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health 1990, 16, 55–58. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [Green Version]
- Veale, J.F. Edinburgh Handedness Inventory—Short Form: A revised version based on confirmatory factor analysis. Laterality 2014, 19, 164–177. [Google Scholar] [CrossRef]
- Belli, A.; Lacour, J.R.; Komi, P.V.; Candau, R.; Denis, C. Mechanical step variability during treadmill running. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 510–517. [Google Scholar] [CrossRef]
- Izquierdo-Renau, M.; Queralt, A.; Encarnación-Martínez, A.; Pérez-Soriano, P. Impact acceleration during prolonged running while wearing conventional versus minimalist shoes. Res. Q. Exerc. Sport 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duquette, A.M.; Andrews, D.M. Comparing methods of quantifying tibial acceleration slope. J. Appl. Biomech. 2010, 26, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R. Meta-Analytic Procedures for Social Research; SAGE Publications Inc.: Newbury Park, CA, USA, 1991; ISBN 080394246X. [Google Scholar]
- Cheung, R.T.H.; Wong, M.Y.M.; Ng, G.Y.F. Effects of motion control footwear on running: A systematic review. J. Sports Sci. 2011, 29, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Hreljac, A. Impact and Overuse Injuries in Runners. Med. Sci. Sports Exerc. 2004, 36, 845–849. [Google Scholar] [CrossRef]
- Lucas-Cuevas, A.G.; Priego Quesada, J.I.; Aparicio, I.; Giménez, J.V.; Llana-Belloch, S.; Pérez-Soriano, P. Effect of 3 Weeks Use of Compression Garments on Stride and Impact Shock during a Fatiguing Run. Int. J. Sports Med. 2015, 36, 826–831. [Google Scholar] [CrossRef]
- Mercer, J.A.; Vance, J.; Hreljac, A.; Hamill, J. Relationship between shock attenuation and stride length during running at different velocities. Eur. J. Appl. Physiol. 2002, 87, 403–408. [Google Scholar] [CrossRef]
- Radin, E.L.; Yang, K.H.; Riegger, C.; Kish, V.L.; O’Connor, J.J. Relationship between lower limb dynamics and knee joint pain. J. Orthop. Res. 1991, 9, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Liew, B.X.W.; Morris, S.; Netto, K. Joint power and kinematics coordination in load carriage running: Implications for performance and injury. Gait Posture 2016, 47, 74–79. [Google Scholar] [CrossRef]
- Wang, J.; Fu, W. Asymmetry between the dominant and non-dominant legs in the lower limb biomechanics during single-leg landings in females. Adv. Mech. Eng. 2019, 11, 1687814019849794. [Google Scholar] [CrossRef]
- Vagenas, G.; Hoshizaki, B. A multivariable analysis of lower extremity kinematic asymmetry in running. Int. J. Sport Biomech. 1992, 8, 11–29. [Google Scholar] [CrossRef]
- Winter, S.; Gordon, S.; Watt, K. Effects of fatigue on kinematics and kinetics during overground running: A systematic review. J. Sports Med. Phys. Fitness 2017, 57, 887–899. [Google Scholar] [CrossRef]
- Maas, E.; De Bie, J.; Vanfleteren, R.; Hoogkamer, W.; Vanwanseele, B. Novice runners show greater changes in kinematics with fatigue compared with competitive runners. Sport. Biomech. 2018, 17, 350–360. [Google Scholar] [CrossRef] [PubMed]
No Weight | Keys | Mobile Phone | Bottle of Water | p-Value (Parametric) | p-Value (Non-Parametric) | |||
---|---|---|---|---|---|---|---|---|
Leg | Handload | Leg × Handload | ||||||
Head peak acceleration, D (g) | 2.05 ± 0.46 | 2.05 ± 0.43 | 2.06 ± 0.40 | 2.03 ± 0.42 | 0.183 | 0.585 | 0.432 | - |
Head peak acceleration, ND (g) | 2.02 ± 0.48 | 1.98 ± 0.43 | 2.02 ± 0.43 | 1.98 ± 0.42 | ||||
Tibia peak acceleration, D (g) | 6.13 ± 1.39 | 6.14 ± 1.35 | 6.22 ± 1.36 | 6.32 ± 1.42 | - | - | - | 0.776 |
Tibia peak acceleration, ND (g) | 6.13 ± 1.51 | 6.20 ± 1.50 | 6.27 ± 1.42 | 6.23 ± 1.47 | 0.500 | |||
Head acceleration magnitude, D (g) | 2.18 ± 0.49 | 2.17 ± 0.45 | 2.19 ± 0.44 | 2.16 ± 0.45 | 0.133 | 0.470 | 0.723 | - |
Head acceleration magnitude, ND (g) | 2.14 ± 0.48 | 2.10 ± 0.45 | 2.14 ± 0.47 | 2.10 ± 0.44 | ||||
Tibia acceleration magnitude, D (g) | 6.12 ± 1.36 | 6.16 ± 1.33 | 6.26 ± 1.31 | 6.35 ± 1.35 | - | - | - | 0.822 |
Tibia acceleration magnitude, ND (g) | 6.07 ± 1.51 | 6.16 ± 1.49 | 6.22 ± 1.40 | 6.22 ± 1.49 | 0.730 | |||
Head acceleration rate, D (g/s) | 68.39 ± 19.80 | 69.89 ± 21.55 | 69.72 ± 18.44 | 70.19 ± 20.52 | 0.428 | 0.964 | 0.327 | - |
Head acceleration rate, ND (g/s) | 68.29 ± 17.98 | 67.01 ± 16.25 | 67.95 ± 15.77 | 66.39 ± 15.83 | ||||
Tibia acceleration rate, D (g/s) | 247.39 ± 104.31 | 262.27 ± 117.22 | 287.09 ± 126.15 * | 280.55 ± 118.41 * | - | - | - | 0.006 |
Tibia acceleration rate, ND (g/s) | 296.28 ± 147.65 | 301.71 ± 145.68 | 298.22 ± 144.43 | 290.12 ± 131.37 | 0.938 | |||
Shock attenuation, D (%) | 65.88 ± 7.57 | 65.86 ± 7.93 | 66.15 ± 7.58 | 66.98 ± 7.81 | 0.984 | 0.495 | 0.622 | - |
Shock attenuation, ND (%) | 65.74 ± 9.86 | 66.35 ± 9.57 | 66.12 ± 9.94 | 66.54 ± 9.44 | ||||
D step length (m) | 0.93 ± 0.09 | 0.94 ± 0.09 | 0.94 ± 0.08 | 0.93 ± 0.07 | 0.008 | 0.960 | 0.986 | - |
ND step length (m) | 0.86 ± 0.10 | 0.86 ± 0.10 | 0.85 ± 0.11 | 0.86 ± 0.11 | ||||
Stride frequency (Hz) | 1.56 ± 0.09 | 1.56 ± 0.10 | 1.56 ± 0.09 | 1.56 ± 0.10 | - | 0.958 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis-Sanchis, R.; Encarnación-Martínez, A.; Priego-Quesada, J.I.; Aparicio, I.; Jimenez-Perez, I.; Pérez-Soriano, P. Acute Effects on Impact Accelerations Running with Objects in the Hand. Life 2021, 11, 550. https://doi.org/10.3390/life11060550
Sanchis-Sanchis R, Encarnación-Martínez A, Priego-Quesada JI, Aparicio I, Jimenez-Perez I, Pérez-Soriano P. Acute Effects on Impact Accelerations Running with Objects in the Hand. Life. 2021; 11(6):550. https://doi.org/10.3390/life11060550
Chicago/Turabian StyleSanchis-Sanchis, Roberto, Alberto Encarnación-Martínez, Jose I. Priego-Quesada, Inmaculada Aparicio, Irene Jimenez-Perez, and Pedro Pérez-Soriano. 2021. "Acute Effects on Impact Accelerations Running with Objects in the Hand" Life 11, no. 6: 550. https://doi.org/10.3390/life11060550
APA StyleSanchis-Sanchis, R., Encarnación-Martínez, A., Priego-Quesada, J. I., Aparicio, I., Jimenez-Perez, I., & Pérez-Soriano, P. (2021). Acute Effects on Impact Accelerations Running with Objects in the Hand. Life, 11(6), 550. https://doi.org/10.3390/life11060550