The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer’s Disease: A Review Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
3. Preclinical AD Definition
4. Optical Coherence Tomography (OCT)
5. Optical Coherence Tomography-Angiography (OCTA)
6. OCT and OCTA Studies in Preclinical AD
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirtz, D.; Thurman, D.J.; Gwinn-Hardy, K.; Mohamed, M.; Chaudhuri, A.R.; Zalutsky, R. How common are the “common” neurologic disorders? Neurology 2007, 68, 326–337. [Google Scholar] [CrossRef]
- Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. 2007, 3, 186–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiso, J.A.; Doudevski, I.; Ritch, R.; Rostagno, A.A. Alzheimer’s Disease and Glaucoma: Mechanistic Similarities and Differences. J. Glaucoma 2013, 22, 36–38. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.L.; Cole, G. Alzheimer disease. J. Am. Med. Assoc. 2002, 287, 2335–2338. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011, 1. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.; Mormino, E.; Johnson, K. The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron 2014, 84, 608–622. [Google Scholar] [CrossRef] [Green Version]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; Dekosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014, 13, 614–629. [Google Scholar] [CrossRef]
- Alber, J.; Goldfarb, D.; Hernandez, K.; Cheng, D.; Cordeiro, F.; Van Stavern, G.P.; Snyder, P.J.; Thompson, L.I.; Debuc, D.C.; Arthur, E.; et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: What we know, what we don’t, and how to move forward. Alzheimer’s Dement. 2020, 16, 229–243. [Google Scholar] [CrossRef]
- Frost, S.; Kanagasingam, Y.; Sohrabi, H.; Vignarajan, J.; Bourgeat, P.; Salvado, O.; Villemagne, V.; Rowe, C.C.; Lance MacAulay, S.; Szoeke, C.; et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl. Psychiatry 2013, 3, e233. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Chan, V.T.T.; Mok, V.C.; Chen, C.; Wong, T.Y. Potential retinal biomarkers for dementia: What is new? Curr. Opin. Neurol. 2019, 32, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Aaker, G.D.; Myung, J.S.; Ehrlich, J.R.; Mohammed, M.; Henchcliffe, C.; Kiss, S. Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin. Ophthalmol. 2010, 4, 1427–1432. [Google Scholar] [CrossRef] [Green Version]
- Burkholder, B.M.; Osborne, B.; Loguidice, M.J.; Bisker, E.; Frohman, T.C.; Conger, A.; Ratchford, J.N.; Warner, C.; Markowitz, C.E.; Jacobs, D.A.; et al. Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch. Neurol. 2009, 66, 1366–1372. [Google Scholar] [CrossRef]
- Rojas, P.; Ramírez, A.I.; de Hoz, R.; Cadena, M.; Ferreras, A.; Monsalve, B.; Salobrar-García, E.; Muñoz-Blanco, J.L.; Urcelay-Segura, J.L.; Salazar, J.J.; et al. Ocular involvement in Friedreich ataxia patients and its relationship with neurological disability, a follow-up study. Diagnostics 2020, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Rojas, P.; de Hoz, R.; Ramírez, A.I.; Ferreras, A.; Salobrar-Garcia, E.; Muñoz-Blanco, J.L.; Urcelay-Segura, J.L.; Salazar, J.J.; Ramírez, J.M. Changes in retinal OCT and their correlations with neurological disability in early ALS patients, a follow-up study. Brain Sci. 2019, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Salobrar-García, E.; de Hoz, R.; Ramírez, A.I.; López-Cuenca, I.; Rojas, P.; Vazirani, R.; Amarante, C.; Yubero, R.; Gil, P.; Pinazo-Durán, M.D.; et al. Changes in visual function and retinal structure in the progression of Alzheimer’s disease. PLoS ONE 2019, 14, e0220535. [Google Scholar] [CrossRef] [Green Version]
- Salobrar-García, E.; Hoyas, I.; Leal, M.; de Hoz, R.; Rojas, B.; Ramirez, A.I.; Salazar, J.J.; Yubero, R.; Gil, P.; Triviño, A.; et al. Analysis of Retinal Peripapillary Segmentation in Early Alzheimer’s Disease Patients. BioMed Res. Int. 2015, 2015, 636548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Martin, E.S.; Rojas, B.; Ramirez, A.I.; de Hoz, R.; Salazar, J.J.; Yubero, R.; Gil, P.; Triviño, A.; Ramirez, J.M. Macular thickness as a potential biomarker of mild Alzheimer’s disease. Ophthalmology 2014, 121, 1149–1151.e3. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, A.I.; de Hoz, R.; Salobrar-García, E.; Salazar, J.J.; Rojas, B.; Ajoy, D.; López-Cuenca, I.; Rojas, P.; Triviño, A.; Ramírez, J.M. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front. Aging Neurosci. 2017, 9, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinton, D.R.; Sadun, A.A.; Blanks, J.C.; Miller, C.A. Optic-Nerve Degeneration in Alzheimer’s Disease. N. Engl. J. Med. 1986, 315, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.Y.; Johnson, L.N.; Sinoff, S.E.; Festa, E.K.; Heindel, W.C.; Snyder, P.J. Change in retinal structural anatomy during the preclinical stage of Alzheimer’s disease. Alzheimer’s Dement. 2018, 10, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Asanad, S.; Fantini, M.; Sultan, W.; Nassisi, M.; Felix, C.M.; Wu, J.; Karanjia, R.; Ross-Cisneros, F.N.; Sagare, A.P.; Zlokovic, B.V.; et al. Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. PLoS ONE 2020, 15, e0232785. [Google Scholar] [CrossRef]
- Kreeke, J.A.; Nguyen, H.; Haan, J.; Konijnenberg, E.; Tomassen, J.; Braber, A.; Kate, M.; Collij, L.; Yaqub, M.; Berckel, B.; et al. Retinal layer thickness in preclinical Alzheimer’s disease. Acta Ophthalmol. 2019, 97, 798–804. [Google Scholar] [CrossRef] [PubMed]
- O’bryhim, B.; Apte, R.; Kung, N.; Coble, D.; Van Starven, G.P. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol. 2018, 136, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- López-Cuenca, I.; de Hoz, R.; Salobrar-García, E.; Elvira-Hurtado, L.; Rojas, P.; Fernández-Albarral, J.A.; Barabash, A.; Salazar, J.J.; Ramírez, A.I.; Ramírez, J.M. Macular Thickness Decrease in Asymptomatic Subjects at High Genetic Risk of Developing Alzheimer’s Disease: An OCT Study. J. Clin. Med. 2020, 9, 1728. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dement. 2016, 12, 292–323. [Google Scholar] [CrossRef]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, N.; Andreasson, U.; Persson, S.; Carrillo, M.C.; Collins, S.; Chalbot, S.; Cutler, N.; Dufour-Rainfray, D.; Fagan, A.M.; Heegaard, N.H.H.; et al. CSF biomarker variability in the Alzheimer’s Association quality control program. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2013, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Leinenbach, A.; Pannee, J.; Dülffer, T.; Huber, A.; Bittner, T.; Andreasson, U.; Gobom, J.; Zetterberg, H.; Kobold, U.; Portelius, E.; et al. Mass Spectrometry–Based Candidate Reference Measurement Procedure for Quantification of Amyloid-β in Cerebrospinal Fluid. Clin. Chem. 2014, 60, 987–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittner, T.; Zetterberg, H.; Teunissen, C.E.; Ostlund, R.E.; Militello, M.; Andreasson, U.; Hubeek, I.; Gibson, D.; Chu, D.C.; Eichenlaub, U.; et al. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid. Alzheimer’s Dement. 2016, 12, 517–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, C.R.; Wiste, H.J.; Weigand, S.D.; Knopman, D.S.; Lowe, V.; Vemuri, P.; Mielke, M.M.; Jones, D.T.; Senjem, M.L.; Gunter, J.L.; et al. Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology 2013, 81, 1732–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D.; et al. Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef]
- Asanad, S.; Ross-Cisneros, F.N.; Barron, E.; Nassisi, M.; Sultan, W.; Karanjia, R.; Sadun, A.A. The retinal choroid as an oculovascular biomarker for Alzheimer’s dementia: A histopathological study in severe disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Asanad, S.; Ross-Cisneros, F.N.; Nassisi, M.; Barron, E.; Karanjia, R.; Sadun, A.A. The retina in Alzheimer’s disease: Histomorphometric analysis of an ophthalmologic biomarker. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1491–1500. [Google Scholar] [CrossRef] [Green Version]
- den Haan, J.; Verbraak, F.D.; Visser, P.J.; Bouwman, F.H. Retinal thickness in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2017, 6, 162–170. [Google Scholar] [CrossRef]
- Satue, M.; Seral, M.; Otin, S.; Alarcia, R.; Herrero, R.; Bambo, M.P.; Fuertes, M.I.; Pablo, L.E.; Garcia-Martin, E. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br. J. Ophthalmol. 2014, 98, 350–355. [Google Scholar] [CrossRef]
- Chan, V.T.T.; Sun, Z.; Tang, S.; Chen, L.J.; Wong, A.; Tham, C.C.; Wong, T.Y.; Chen, C.; Ikram, M.K.; Whitson, H.E.; et al. Spectral-Domain OCT Measurements in Alzheimer’s Disease: A Systematic Review and Meta-analysis. Ophthalmology 2019, 126, 497–510. [Google Scholar] [CrossRef]
- Kashani, A.H.; Asanad, S.; Chen, J.; Singer, M.B.; Zhang, J.; Sharifi, M.; Khansari, M.M.; Abdolahi, F.; Shi, Y.; Biffi, A.; et al. Past, present and future role of retinal imaging in neurodegenerative disease. Prog. Retin. Eye Res. 2021. [Google Scholar] [CrossRef]
- Hu, J.; Gottlieb, C.B.; Barajas, D.J.; Barnett, C.J.; Schoenholz, T.; Sadda, S.V.R. Improved repeatability of retinal thickness measurements using line-scan ophthalmoscope image-based retinal tracking. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 310–314. [Google Scholar] [CrossRef]
- Obis, J.; Garcia-Martin, E.; Orduna, E.; Vilades, E.; Alarcia, R.; Rodrigo, M.J.; Pablo, L.E.; Polo, V.; Larrosa, J.M.; Satue, M. Reproducibility of retinal and choroidal measurements using swept-source optical coherence tomography in patients with Parkinson’s disease Reprodutibilidade das medições da retina e da coroideia utilizando a tomografia de coerência ótica Swept-Source em pacientes com a doença de Parkinson. Arq. Bras. Oftalmol. 2020, 83, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Roisman, L.; Goldhardt, R. OCT Angiography: An Upcoming Non-invasive Tool for Diagnosis of Age-Related Macular Degeneration. Curr. Ophthalmol. Rep. 2017, 5, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Coscas, F.; Glacet-Bernard, A.; Miere, A.; Caillaux, V.; Uzzan, J.; Lupidi, M.; Coscas, G.; Souied, E.H. Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa. Am. J. Ophthalmol. 2016, 161, 160–171.e2. [Google Scholar] [CrossRef]
- Spaide, R.F. Volume-Rendered Optical Coherence Tomography of Diabetic Retinopathy Pilot Study. Am. J. Ophthalmol. 2015, 160, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, D.; Yi, J.; Puliafito, C.A.; Kashani, A.H. OCT angiography in healthy human subjects. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 510–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Tsokolas, G.; Tsaousis, K.T.; Diakonis, V.F.; Matsou, A.; Tyradellis, S. Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review. Eye Brain 2020, 12, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.P.; Zhang, M.; Hwang, T.S.; Bailey, S.T.; Wilson, D.J.; Jia, Y.; Huang, D. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulut, M.; Kurtuluş, F.; Gözkaya, O.; Erol, M.K.; Cengiz, A.; Akldan, M.; Yaman, A. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br. J. Ophthalmol. 2018, 102, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Patton, N.; Aslam, T.; MacGillivray, T.; Pattie, A.; Deary, I.J.; Dhillon, B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: A rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 2005, 206, 319–348. [Google Scholar] [CrossRef]
- Ramírez, J.M.; Rojas, B.; Gallego, B.I.; García-Martín, E.S.; Triviño, A.; Ramírez, A.I.; Salazar, J.J.; de Hoz, R. Glia and blood retinal barrier: Effects of ocular hypertension. In Cardiovascular Disease II; iConcept Press Ltd.: Hong Kong, China, 2014; pp. 123–162. [Google Scholar]
- Berisha, F.; Feke, G.T.; Trempe, C.L.; McMeel, J.W.; Schepens, C.L. Retinal abnormalities in early Alzheimer’s Disease. Investig. Opthalmol. Vis. Sci. 2007, 48, 2285. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.A.; McGowan, A.J.; Cardwell, C.R.; Cheung, C.Y.; Craig, D.; Passmore, P.; Silvestri, G.; Maxwell, A.P.; McKay, G.J. Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2015, 1, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Isas, J.M.; Luibl, V.; Johnson, L.V.; Kayed, R.; Wetzel, R.; Glabe, C.G.; Langen, R.; Chen, J. Soluble and Mature Amyloid Fibrils in Drusen Deposits. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1304–1310. [Google Scholar] [CrossRef] [Green Version]
- Snyder, P.J.; Johnson, L.N.; Lim, Y.Y.; Santos, C.Y.; Alber, J.; Maruff, P.; Fernández, B. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimer’s Dement. 2016, 4, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dentchev, T.; Milam, A.H.; Lee, V.M.Y.; Trojanowski, J.Q.; Dunaief, J.L. Amyloid-β is found in drusen from some age-related macular degeneration retinas, but not drusen from normal retinas. Mol. Vis. 2003, 9, 184–190. [Google Scholar] [PubMed]
- Johnson, L.V.; Leitner, W.P.; Rivest, A.J.; Staples, M.K.; Radeke, M.J.; Anderson, D.H. The Alzheimer’s Aβ-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2002, 99, 11830. [Google Scholar] [CrossRef] [Green Version]
- Golzan, S.M.; Goozee, K.; Georgevsky, D.; Avolio, A.; Chatterjee, P.; Shen, K.; Gupta, V.; Chung, R.; Savage, G.; Orr, C.F.; et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: Ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimer’s Res. Ther. 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Asanad, S.; Nassisi, M.; Ross-Cisneros, F.N.; Harrington, M.; Sadun, A.A. Retinal nerve fiber layer thinning in preclinical alzheimer’s disease using in vivo optical coherence tomography: An investigation of early detection ocular biomarkers. Alzheimer’s Dement. 2018, 14, P214–P215. [Google Scholar] [CrossRef]
- Van de Kreeke, J.A.; Nguyen, H.T.; Konijnenberg, E.; Tomassen, J.; den Braber, A.; ten Kate, M.; Yaqub, M.; van Berckel, B.; Lammertsma, A.A.; Boomsma, D.I.; et al. Longitudinal retinal layer changes in preclinical Alzheimer’s disease. Acta Ophthalmol. 2020. [Google Scholar] [CrossRef]
- Kreeke, J.A.; Nguyen, H.T.; Konijnenberg, E.; Tomassen, J.; Den Braber, A.; Ten Kate, M.; Yaqub, M.; Van Berckel, B.; Lammertsma, A.A.; Boomsma, D.I.; et al. Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br. J. Ophthalmol. 2019, 104, 157–161. [Google Scholar] [CrossRef]
- Asanad, S.; Felix, C.M.; Fantini, M.; Harrington, M.G.; Sadun, A.A.; Karanjia, R. Retinal ganglion cell dysfunction in preclinical Alzheimer’s disease: An electrophysiologic biomarker signature. Sci. Rep. 2021, 11, 6344. [Google Scholar] [CrossRef]
- Garcia-Ptacek, S.; Eriksdotter, M.; Jelic, V.; Porta-Etessam, J.; Kåreholt, I.; Manzano Palomo, S. Subjective cognitive impairment: Towards early identification of Alzheimer disease. Neurología 2016, 31, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, R.; Bras, J. The age factor in Alzheimer’s disease. Genome Med. 2015, 7, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jáñez-Escalada, L.; Jáñez-García, L.; Salobrar-García, E.; Santos-Mayo, A.; de Hoz, R.; Yubero, R.; Gil, P.; Ramírez, J.M. Spatial analysis of thickness changes in ten retinal layers of Alzheimer’s disease patients based on optical coherence tomography. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
Study | Study-Design, Sample Size | Participant’s Status, (M/F), Years | Biomarker Preclinical AD | Neurological Test | OCT/OCT-A Model | OCT-OCT-A Parameters | Significant Parameters |
---|---|---|---|---|---|---|---|
Snyder et al., 2016 | Cross-sectional (n = 63) | n = 10 Preclinical AD, (2/8), 62.28 (5.15) n = 53 Controls; (22/31), 65.50 (5.87) | Mean Aβ SUVr ratio 1.27 (0.22) | GDS DASS MAC-Q MMSE GMLT ISLT | Heidelberg Spectralis SD-OCT | pRNFL, mRNFL, GCL, IPL, INL, OPL, ONL | ↑ IPL |
Golzan et al., 2017 | Cross-sectional (n = 73) | n = 50 Elderly control group, (14/36), 79 ± 5 n = 23 Preclinical AD group (9/14) 80 ± 4 | Mean Aβ, SURVr 1.75 ± 0.24 | MAC-Q MoCA | Nidek SD-OCT | pRNFL Macular RGCL complex | None |
O’Bryhim et al., 2018 | Observational case-control (n = 32) | n = 14 Preclinical AD. (8/6), 73.5 (4,7) n = 18 Control, 8/10, 75,2 (6,6) | Aβ+ CSF and/or PET (PiB or F-AV-45) | CDR | Optovue OCT-A System | Total and Temporal RNFL thickness; GCL thickness; Macular Volume; Inner, outer and total foveal thickness; total macular, foveal, paravofeal vascular density and FAZ | ↑ FAZ |
Santo et al., 2018 | Longitudinal 27 months follow-up (n = 56) | n = 15 Preclinical AD, (4/11), 68.25 (5.81) n = 41 Controls, (17/24), 64.56 (5.26) | Mean Aβ SUVr ratio 1.32 (0.18) | MMSE MAC-Q ISLT GMLT | Heidelberg Spectralis SD-OCT | pRNFL, mRNFL, CGL, IPL, INL, OPL, ONL | ↓ mRNFL ↓ INL and ONL inferior sector |
van de Kreeke et al., 2019 | Observational case-control (n = 124) | n = 13 preclinical AD n = 111 controls Overall (58/66), 66.6 ± 6.3 | Global BP ND of Aβ 0.122 (0.095–0.177) | MMSE | Zeiss Cirrus 5000 OCT-A | Retinal vessel density in inner and outer ring macula and around ONH. FAZ | ↑ Retinal vessel density in inner and outer ring macula and around ONH |
van de Kreeke et al., 2019 | Cross-sectional (n = 165) | n = 18 Preclinical AD n = 147 control Overall (70/95), 69.5 (6.9) | Mean BPND of Aβ 0.120 (0.87–0.177) | MMSE | Heidelberg Spectralis SD-OCT | pRNFL, mRNFL, GCL, IPL | None |
van de Kreeke et al., 2020 | Longitudinal 22 months follow-up (n = 145) | n = 16 Preclinical AD n = 129 Controls Overall (67/78), 68.6 ± 6.3–70.5 ± 6.2 | Mean BPND of Aβ 0.120 (0.088–0.174) | MMSE | Heidelberg Spectralis SD-OCT | pRNFL, mRNFL, GCL, IPL | None |
López-Cuenca et al., 2020 | Cross sectional (n = 64) | n = 35 FH+ Carriers of ApoE ε4, (11/24), 57.00(54.00–61.00) n = 29 FH-Non-Carriers of ApoE ε4, (12/17), 59.00 (54.00–65.00) | None | MMSE | Heidelberg Spectralis SD-OCT | pRNFL, Total retinal thickness, mRnfl, GCL, IPL, INL, OPL, ONL, RPE | ↓ mRNFL central sector, ↓ IPL inferior and nasal sectors, ↓ INL central and inferior sectors, ↓ OPL inferior sector |
Asanad et al., 2021 | Cross sectional (n = 29) | n = 15 Preclinical AD, (3/12), 76.5 ± 6.6 n = 14 Controls (4/10), (79.9 ± 8.5) | Aβ42/Tau ratio in CSF (1.3 ± 0.4) | Uniform Data Set-3 criteria of the NACC | Zeiss Cirrus SD-OCT | RNFL, GCL-IPL, Total macular thickness | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cuenca, I.; Salobrar-García, E.; Elvira-Hurtado, L.; Fernández-Albarral, J.A.; Sánchez-Puebla, L.; Salazar, J.J.; Ramírez, J.M.; Ramírez, A.I.; de Hoz, R. The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer’s Disease: A Review Study. Life 2021, 11, 712. https://doi.org/10.3390/life11070712
López-Cuenca I, Salobrar-García E, Elvira-Hurtado L, Fernández-Albarral JA, Sánchez-Puebla L, Salazar JJ, Ramírez JM, Ramírez AI, de Hoz R. The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer’s Disease: A Review Study. Life. 2021; 11(7):712. https://doi.org/10.3390/life11070712
Chicago/Turabian StyleLópez-Cuenca, Inés, Elena Salobrar-García, Lorena Elvira-Hurtado, José A. Fernández-Albarral, Lidia Sánchez-Puebla, Juan J. Salazar, José M. Ramírez, Ana I. Ramírez, and Rosa de Hoz. 2021. "The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer’s Disease: A Review Study" Life 11, no. 7: 712. https://doi.org/10.3390/life11070712
APA StyleLópez-Cuenca, I., Salobrar-García, E., Elvira-Hurtado, L., Fernández-Albarral, J. A., Sánchez-Puebla, L., Salazar, J. J., Ramírez, J. M., Ramírez, A. I., & de Hoz, R. (2021). The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer’s Disease: A Review Study. Life, 11(7), 712. https://doi.org/10.3390/life11070712