In Vitro Assays for the Assessment of Impaired Mitochondrial Bioenergetics in Equine Atypical Myopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture of Equine Primary Myoblasts
2.2. Toxicity Assays
2.3. High-Resolution Respirometry
2.4. Total Protein Content
2.5. Data Analysis
3. Results
3.1. Toxicity Assays
3.2. High-Resolution Respirometry
3.3. Total Protein Content
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Votion, D.-M.; van Galen, G.; Sweetman, L.; Boemer, F.; de Tullio, P.; Dopagne, C.; Lefère, L.; Mouithys-Mickalad, A.; Patarin, F.; Rouxhet, S.; et al. Identification of methylenecyclopropyl acetic acid in serum of European horses with atypical myopathy. Equine Vet. J. 2013, 46, 146–149. [Google Scholar] [CrossRef]
- Valberg, S.J.; Sponseller, B.T.; Hegeman, A.D.; Earing, J.; Bender, J.B.; Martinson, K.L.; Patterson, S.E.; Sweetman, L. Seasonal pasture myopathy/atypical myopathy in North America associated with ingestion of hypoglycin A within seeds of the box elder tree. Equine Vet. J. 2013, 45, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Unger, L.; Nicholson, A.; Jewitt, E.M.; Gerber, V.; Hegeman, A.; Sweetman, L.; Valberg, S. Hypoglycin A concentrations in seeds of acer pseudoplatanus trees growing on atypical myopathy-affected and control pastures. J. Vet. Intern. Med. 2014, 28, 1289–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westermann, C.M.; van Leeuwen, R.; van Raamsdonk, L.W.D.; Mol, H.G.J. Hypoglycin A concentrations in maple tree species in the netherlands and the occurrence of atypical myopathy in horses. J. Vet. Intern. Med. 2016, 30, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Baise, E.; Habyarimana, J.A.; Amory, H.; Boemer, F.; Douny, C.; Gustin, P.; Marcillaud-Pitel, C.; Patarin, F.; Weber, M.; Votion, D.M. Samaras and seedlings of Acer pseudoplatanus are potential sources of hypoglycin A intoxication in atypical myopathy without necessarily inducing clinical signs. Equine Vet. J. 2016, 48, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Fowden, L.; Pratt, H.M. Cyclopropyl amino acids of the genus Acer: Distribution and biosynthesis. Phytochemistry 1973, 12, 1677–1681. [Google Scholar] [CrossRef]
- Bochnia, M.; Sander, J.; Ziegler, J.; Terhardt, M.; Sander, S.; Janzen, N.; Cavalleri, J.V.; Zuraw, A.; Wensch-Dorendorf, M.; Zeyner, A. Detection of MCPG metabolites in horses with atypical myopathy. PLoS ONE 2019, 14, e0211698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Holt, C. Methylenecyclopropaneacetic acid, a metabolite of hypoglycin. Biochim. Biophys. Acta 1966, 125, 1–10. [Google Scholar] [CrossRef]
- Melde, K.; Buettner, H.; Boschert, W.; Wolf, H.P.; Ghisla, S. Mechanism of hypoglycaemic action of methylenecyclopropylglycine. Biochem. J. 1989, 259, 921–924. [Google Scholar] [CrossRef]
- Melde, K.; Jackson, S.; Bartlett, K.; Stanley, H.; Sherrattt, A.; Ghisla, S. Metabolic consequences of methylenecyclopropylglycine poisoning in rats. Biochem. J. 1991, 274, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Von Holt, C.; Chang, J.; Von Holt, M.; Böhm, H. Metabolism and metabolic effects of hypoglycin. Biochim. Biophys. Acta 1964, 90, 611–613. [Google Scholar] [CrossRef]
- Westermann, C.M.; Dorland, D.; van Diggelen, O.P.; Schoonderwoerd, K.; Bierau, J.; Waterham, H.R.; van der Kolk, J.H. Decreased oxidative phosphorylation and PGAM deficiency in horses suffering from atypical myopathy associated with acquired MADD. Mol. Gen. Metab. 2011, 104, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, H.; Boemer, F.; van Galen, G.; Serteyn, D.; Amory, H.; Baise, E.; Cassart, D.; van Loon, G.; Marcillaud-Pitel, C.; Votion, D.M. Mitochondrial function is altered in horse atypical myopathy. Mitochondrion 2016, 30, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Westermann, C.M.; Dorland, L.; Votion, D.M.; de Sain-van der Velden, M.G.; Wijnberg, I.D.; Wanders, R.J.; Spliet, W.G.; Testerink, N.; Berger, R.; Ruiter, J.P.; et al. Acquired multiple Acyl-CoA dehydrogenase deficiency in 10 horses with atypical myopathy. Neuromuscul. Disord. 2008, 18, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Bochnia, M.; Ziegler, J.; Sander, J.; Uhlig, A.; Schaefer, S.; Vollstedt, S.; Glatter, M.; Abel, S.; Recknagel, S.; Schusser, G.F.; et al. Hypoglycin A content in blood and urine discriminates horses with atypical myopathy from clinically normal horses grazing on the same pasture. PLoS ONE 2015, 10, e0136785. [Google Scholar] [CrossRef]
- Karlíková, R.; Široká, J.; Jahn, P.; Friedecký, D.; Gardlo, A.; Janečková, H.; Hrdinová, F.; Drábková, Z.; Adam, T. Equine atypical myopathy: A metabolic study. Vet. J. 2016, 216, 125–132. [Google Scholar] [CrossRef]
- Boemer, F.; Detilleux, J.; Cello, C.; Amory, H.; Marcillaud-Pitel, C.; Richard, E.; van Galen, G.; van Loon, G.; Lefère, L.; Votion, D.M. Acylcarnitines profile best predicts survival in horses with atypical myopathy. PLoS ONE 2017, 12, e0182761. [Google Scholar] [CrossRef] [Green Version]
- van Galen, G.; Marcillaud Pitel, C.; Saegerman, C.; Patarin, F.; Amory, H.; Baily, J.D.; Cassart, D.; Gerber, V.; Hahn, C.; Harris, P.; et al. European outbreaks of atypical myopathy in grazing equids (2006–2009): Spatiotemporal distribution, history and clinical features. Equine Vet. J. 2012, 44, 614–620. [Google Scholar] [CrossRef]
- Cassart, D.; Baise, E.; Cherel, Y.; Delguste, C.; Antoine, N.; Votion, D.; Amory, H.; Rollin, F.; Linden, A.; Coignoul, F.; et al. Morphological alterations in oxidative muscles and mitochondrial structure associated with equine atypical myopathy. Equine Vet. J. 2007, 39, 26–32. [Google Scholar] [CrossRef]
- Palencia, P.; Rivero, J.L.L. Atypical myopathy in two grazing equids in northern Spain. Vet. Rec. 2007, 161, 346–348. [Google Scholar] [CrossRef]
- Votion, D.-M.; Gnaiger, E.; Lemieux, H.; Mouithys-Mickalad, A.; Serteyn, S. Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS ONE 2012, 7, e34890. [Google Scholar] [CrossRef]
- Votion, D.M.; François, A.C.; Kruse, C.; Renaud, B.; Farinelle, A.; Bouquieaux, M.C.; Marcillaud-Pitel, C.; Gustin, P. Answers to the frequently asked questions regarding horse feeding and management practices to reduce the risk of atypical myopathy. Animals 2020, 24, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Galen, G.; Saegerman, C.; Marcillaud Pitel, C.; Patarin, F.; Amory, H.; Baily, J.D.; Cassart, D.; Gerber, V.; Hahn, C.; Harris, P.; et al. European outbreaks of atypical myopathy in grazing horses (2006–2009): Determination of indicators for risk and prognostic factors. Equine Vet. J. 2012, 44, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.K.; Anderson, R.C.; McCowen, M.C.; Harris, P.N. Pharmacologic action of hypoglycin A and B. J. Pharmacol. Exp. Ther. 1957, 121, 272–285. [Google Scholar] [PubMed]
- Brooks, S.E.; Audretsch, J.J. Studies on hypoglycin toxicity in rats. I. Changes in hepatic ultrastructure. Am. J. Pathol. 1970, 59, 161–180. [Google Scholar]
- Ceusters, J.D.; Mouithys-Mickalad, A.A.; de la Rebière de Pouyade, G.; Franck, T.J.; Votion, D.M.; Deby-Dupont, G.P.; Serteyn, D.A. Assessment of reactive oxygen species production in cultured equine skeletal myoblasts in response to conditions of anoxia followed by reoxygenation with or without exposure to peroxidases. Am. J. Vet. Res. 2012, 73, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D.; Gnaiger, E. High-Resolution Respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 2012, 810, 25–58. [Google Scholar] [CrossRef]
- Gnaiger, E. Mitochondrial Pathways and Respiratory Control. An Introduction to OXPHOS Analysis, 5th ed.; Bioenergetics Communications: Axams, Austria, 2020. [Google Scholar] [CrossRef]
- Lemieux, H.; Subarsky, P.; Doblander, C.; Wurn, M.; Troppmair, J.; Gnaiger, E. Impairment of mitochondrial respiratory function as an early biomarker of apoptosis induced by growth factor removal. BioRxiv 2017. [Google Scholar] [CrossRef] [Green Version]
- Remels, A.H.V.; Langen, R.C.J.; Schrauwen, P.; Schaart, G.; Schols, A.M.W.J.; Gosker, H.R. Regulation of mitochondrial biogenesis during myogenesis. Mol. Cell. Endocrinol. 2010, 315, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavli, D.; Prill, S.; Ezra, E.; Levy, G.; Cohen, M.; Vinken, M.; Vanfleteren, J.; Jaeger, M.; Nahmias, Y. Real-time monitoring of metabolic function in liver-onchip microdevices tracks the dynamics of Mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 2016, 113, E2231–E2240. [Google Scholar] [CrossRef] [Green Version]
- Schrauwen, P.; Schrauwen-Hinderling, V.; Hoeks, J.; Hesselink, M.K.C. Mitochondrial dysfunction and lipotoxicity. BBA Mol. Cell. Biol. Lipids 2010, 1801, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative Stress, Mitochondrial Dysfunction, and Aging. J. Signal Trans. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farah, B.L.; Sinha, R.A.; Wu, Y.; Singh, B.K.; Lim, A.; Hirayama, M.; Landau, D.J.; Bay, B.H.; Koeberl, D.; Yen, P.M. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa). Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moehle, E.A.; Shen, K.; Dillin, A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J. Biol. Chem. 2019, 14, 5396–5407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baydoun, A.R. Cell culture techniques. In Principles and Techniques of Biochemistry and Molecular Biology; Baydoun, A.R., Wilson, K., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 71–102. [Google Scholar] [CrossRef]
- Kaur, G.; Dufour, J.M. Cell lines. Spermatogenesis 2012, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
SUIT Protocols | |
---|---|
SUIT1 1 | 1GM; 2D; 3S; 4U; 5Rot; 6Ama |
SUIT2 1 | 1PM; 2D; 3G; 4S; 5U; 6Rot; 7Ama |
SUIT3 2 | 1ActM; 2D; 3S; 4U; 5Rot; 6Ama |
SUIT4 2 | 1OctM; 2D; 3S; 4U; 5Rot; 6Ama |
SUIT5 2 | 1PalM; 2D; 3S; 4U; 5Rot; 6Ama |
Protocol | CIP | FP | CI + IIP | CI + IIE | CIIE |
---|---|---|---|---|---|
SUIT 1 | 46% | - | 43% | 40% | 32% |
SUIT 2 | 53% | - | 43% | 40% | 29% |
SUIT 3 | - | 67% | 61% | 72% | 51% |
SUIT 4 | - | 74% | 62% | 56% | 49% |
SUIT 5 | - | 67% | 60% | 58% | 37% |
P5 | P6 | P7 | P8 |
---|---|---|---|
4.17 ± 0.44 | 4.89 ± 0.55 | 3.79 ± 0.32 | 3.85 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruse, C.-J.; Stern, D.; Mouithys-Mickalad, A.; Niesten, A.; Art, T.; Lemieux, H.; Votion, D.-M. In Vitro Assays for the Assessment of Impaired Mitochondrial Bioenergetics in Equine Atypical Myopathy. Life 2021, 11, 719. https://doi.org/10.3390/life11070719
Kruse C-J, Stern D, Mouithys-Mickalad A, Niesten A, Art T, Lemieux H, Votion D-M. In Vitro Assays for the Assessment of Impaired Mitochondrial Bioenergetics in Equine Atypical Myopathy. Life. 2021; 11(7):719. https://doi.org/10.3390/life11070719
Chicago/Turabian StyleKruse, Caroline-J., David Stern, Ange Mouithys-Mickalad, Ariane Niesten, Tatiana Art, Hélène Lemieux, and Dominique-M. Votion. 2021. "In Vitro Assays for the Assessment of Impaired Mitochondrial Bioenergetics in Equine Atypical Myopathy" Life 11, no. 7: 719. https://doi.org/10.3390/life11070719
APA StyleKruse, C. -J., Stern, D., Mouithys-Mickalad, A., Niesten, A., Art, T., Lemieux, H., & Votion, D. -M. (2021). In Vitro Assays for the Assessment of Impaired Mitochondrial Bioenergetics in Equine Atypical Myopathy. Life, 11(7), 719. https://doi.org/10.3390/life11070719