Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biopolymers
2.2. Scaffolds Fabrication
2.2.1. Cast Films
2.2.2. Emulsion-Templated Scaffolds
2.2.3. Particulate-Leached Scaffolds
2.3. Characterization
2.3.1. Morphological Characterization
2.3.2. Biopolymers’ Molecular Mass Distribution
2.3.3. Thermal Analysis
2.3.4. Water Contact Angle
2.3.5. Swelling in Water
2.3.6. Porosity
2.3.7. Mechanical Properties
3. Results
3.1. Biopolymers Characterization
3.2. P(3HB) and P(3HB-co-3HV) Cast Films
3.3. Preparation of Porous P(3HB)- and P(3HB-co-3HV) Scaffolds
3.3.1. Solution Casting with Particulate Leaching (SCPL)
3.3.2. Water Emulsion Templating
3.4. Characterization of the P(3HB) and P(3HB-co-3HV) Porous Scaffolds
3.4.1. Porosity
3.4.2. Water Contact Angle
3.4.3. Swelling in Water
3.5. Impact of the Scaffolding Techniques on the Biopolymers’ Physical and Chemical Properties
3.5.1. Molecular Mass Distribution
3.5.2. Thermal Properties
3.6. Mechanical Properties of the Emulsion-Templated Scaffolds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Deng, B.; Zhao, X. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Structure, Property, and Fiber. Int. J. Polym. Sci. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Możejko-Ciesielska, J.; Kiewisz, R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 2016, 192, 271–282. [Google Scholar] [CrossRef]
- Elmowafy, E.; Abdal-Hay, A.; Skouras, A.; Tiboni, M.; Casettari, L.; Guarino, V. Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering. Expert Rev. Med. Devices 2019, 16, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Zubairi, S.I.; Mantalaris, A.; Bismarck, A.; Aizad, S. Polyhydroxyalkanoates (PHAs) for tissue engineering applications: Biotransformation of palm oil mill effluent (POME) to value-added polymers. J. Teknol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Wang, Y.; Shen, X.Y.; Yang, G.; Jian, J.; Wang, H.S.; Chen, G.Q.; Wu, Q. MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials 2011, 32, 6435–6444. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, S.; Furrer, P.; Lübben, J.; Zinn, M.; Cartmell, S. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J. Biomed. Mater. Res. Part A 2010, 93, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.; Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat. 2015, 227, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019, 4, 271–292. [Google Scholar] [CrossRef] [PubMed]
- Dolcimascolo, A.; Calabrese, G.; Conoci, S.; Parenti, R. Innovative Biomaterials for Tissue Engineering. In Biomaterial-Supported Tissue Reconstruction or Regeneration; IntechOpen: London, UK, 2019; pp. 1–18. Available online: https://www.intechopen.com/chapters/65513 (accessed on 1 August 2021).
- Cameron, N.R. High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 2005, 46, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
- Zubairi, S.I.; Bismarck, A.; Mantalaris, A. The effect of surface heterogeneity on wettability of porous three dimensional (3-D) scaffolds of poly(3-hydroxybutyric acid) (PHB) and poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV). J. Teknol. 2015, 75, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.X.; Choi, J.W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001, 7, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, M.V.; Sarraguça, M.C.; Freitas, F.; Lopes, J.A.; Reis, M.A.M. Online monitoring of P(3HB) produced from used cooking oil with near-infrared spectroscopy. J. Biotechnol. 2015, 194, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, R.; Cai, J.Y.; Liu, Z.; Zheng, Y.; Wang, H.; Li, Q.; He, N. Biosynthesis and Thermal Properties of PHBV Produced from Levulinic Acid by Ralstonia eutropha. PLoS ONE 2013, 8, e60318. [Google Scholar] [CrossRef] [Green Version]
- de Meneses, L.; Pereira, J.R.; Sevrin, C.; Grandfils, C.; Paiva, A.; Reis, M.A.M.; Freitas, F. Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines. New Biotechnol. 2020, 55, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Rebocho, A.T.; Pereira, J.R.; Freitas, F.; Neves, L.A.; Alves, V.D.; Sevrin, C.; Grandfils, C.; Reis, M.A.M. Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl. Food Biotechnol. 2019, 6, 71–82. [Google Scholar] [CrossRef]
- Morais, C.; Freitas, F.; Cruz, M.V.; Paiva, A.; Dionísio, M.; Reis, M.A.M. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates. Int. J. Biol. Macromol. 2014, 71, 68–73. [Google Scholar] [CrossRef]
- Kumar, P.T.S.; Lakshmanan, V.K.; Biswas, R.; Nair, S.V.; Jayakumar, R. Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing. J. Biomed. Nanotechnol. 2012, 8, 891–900. [Google Scholar] [CrossRef]
- Pereira, J.R.; Araújo, D.; Marques, A.C.; Neves, L.A.; Grandfils, C.; Sevrin, C.; Alves, V.D.; Fortunato, E.; Reis, M.A.M.; Freitas, F. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int. J. Biol. Macromol. 2018, 122, 1144–1151. [Google Scholar] [CrossRef]
- El-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of Poly(3-hydroxyalkanoate) PHAs and their blends. Polym. Test. 2002, 21, 665–674. [Google Scholar] [CrossRef]
- Bergstrand, A.; Uppström, S.; Larsson, A. Permeability of porous poly(3-hydroxybutyrate) barriers of single and bilayer type for implant applications. Int. J. Polym. Sci. 2014, 2014. [Google Scholar] [CrossRef]
- Bergstrand, A.; Andersson, H.; Cramby, J.; Sott, K.; Larsson, A. Preparation of Porous Poly(3-Hydroxybutyrate) Films by Water-Droplet Templating. J. Biomater. Nanobiotechnol. 2012, 3, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Degeratu, C.N.; Zaharia, C.; Tudora, M.R.; Tucureanu, C.; Hubca, G. Influence of Porosity Upon Cells Adhesion on Polyhydroxyalkanoates Films. Chem. Bull. Politeh. Univ. Timis. 2010, 55, 189–192. [Google Scholar]
- Volova, T.G.; Tarasevich, A.A.; Golubev, A.I.; Boyandin, A.N.; Shumilova, A.A.; Nikolaeva, E.D.; Shishatskaya, E.I. Laser processing of polymer constructs from poly(3-hydroxybutyrate). J. Biomater. Sci. Polym. Ed. 2015, 26, 1210–1228. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.K.; Valappil, S.P.; Roy, I.; Boccaccini, A.R. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 2006, 7, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cui, F.; Luo, Z.; Lin, Y.; Zhao, K.; Chen, G. Wettability improvement of bacterial polyhydroxyalkanoates via ion implantation. Surf. Coat. Technol. 2000. [Google Scholar] [CrossRef]
- Ruiz, I.; Hermida, É.B.; Baldessari, A. Fabrication and characterization of porous PHBV scaffolds for tissue engineering. J. Phys. Conf. Ser. 2011, 332. [Google Scholar] [CrossRef]
- Zhao, K.; Deng, Y.; Chen, J.C.; Chen, G.Q. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 2003, 24, 1041–1045. [Google Scholar] [CrossRef]
- Zhu, X.; Zhong, T.; Huang, R.; Wan, A. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. J. Biomater. Sci. Polym. Ed. 2015, 26, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Modaress, M.P.; Mirzadeh, H.; Zandi, M. Fabrication of a porous wall and higher interconnectivity scaffold comprising gelatin/chitosan via combination of salt-leaching and lyophilization methods. Iran. Polym. J. English Ed. 2012, 21, 191–200. [Google Scholar] [CrossRef]
- Reignier, J.; Huneault, M.A. Preparation of interconnected poly(ε{lunate}-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 2006, 47, 4703–4717. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.H.; Park, I.K.; Kim, J.M.; Lee, J.H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007, 28, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Torun Köse, G.; Kenar, H.; Hasirci, N.; Hasirci, V. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 2003, 24, 1949–1958. [Google Scholar] [CrossRef]
- Choudhury, M.; Mohanty, S.; Nayak, S. Effect of different solvents in solvent casting of porous PLA scaffolds—In biomedical and tissue engineering applications. J. Biomater. Tissue Eng. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Pamua, E.; Ba, M.; Czajkowska, B.; Dobrzyñski, P.; Bero, M.; Kasperczyk, J. Elaboration and Characterization of Biodegradable Scaffolds from Poly with Low-Toxic Zirconium Acetylacetonate Abstract. Ann. Transplant. 2004, 9, 64–67. [Google Scholar]
- Price, G.J.; West, P.J.; Smith, P.F. Control of polymer structure using power ultrasound. Ultrason.-Sonochem. 1994, 1, 51–57. [Google Scholar] [CrossRef]
- Amaro, L.; Correia, D.M.; Martins, P.M.; Botelho, G.; Carabineiro, S.A.C.; Ribeiro, C.; Lanceros-Mendez, S. Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications. Polymer 2020, 12, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasso-Gastinel, C.F.; Soltero-Martínez, J.F.A.; Mendizábal, E. Introduction: Modifiable Characteristics and Applications. In Modification of Polymer Properties; William Andrew Publishing: New York, NY, USA, 2016; pp. 1–21. ISBN 9780323443982. [Google Scholar]
- Conti, D.; Pezzin, H.; Anto, L.; Coelho, A. Mechanical and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blends. Macromol. Symp. 2006, 1, 491–500. [Google Scholar] [CrossRef]
- Lemechko, P.; Le Fellic, M.; Bruzaud, S. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int. J. Biol. Macromol. 2019, 128, 429–434. [Google Scholar] [CrossRef]
- Das, R.; Saha, N.R.; Pal, A.; Chattopadhyay, D.; Paul, A.K. Comparative evaluation of physico-chemical characteristics of biopolyesters P (3HB) and P (3HB-co-3HV) produced by endophytic Bacillus cereus RCL 02. Front. Biol. 2018, 13. [Google Scholar] [CrossRef]
- Rebocho, A.T.; Pereira, J.R.; Neves, L.A.; Alves, V.D.; Sevrin, C.; Grandfils, C.; Freitas, F.; Reis, M.A.M. Preparation and characterization of films based on a natural p(3hb)/mcl-pha blend obtained through the co-culture of cupriavidus necator and pseudomonas citronellolis in apple pulp waste. Bioengineering 2020, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, R.; Sherborne, C.; Paterson, T.; Green, N.H.; Reilly, G.C.; Claeyssens, F. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2016, 54, 159–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, X.; Potter, M.; Cui, Z.; Dye, J.F. Manufacture and characterisation of EmDerm—Novel hierarchically structured bio-active scaffolds for tissue regeneration. J. Mater. Sci. Mater. Med. 2018, 29. [Google Scholar] [CrossRef] [Green Version]
- Naranda, J.; Sušec, M.; Maver, U.; Gradišnik, L.; Gorenjak, M.; Vukasović, A.; Ivković, A.; Rupnik, M.S.; Vogrin, M.; Krajnc, P. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016, 6, 28695. [Google Scholar] [CrossRef]
- Wen, J.; Yao, J.; Chen, X.; Shao, Z. Silk Fibroin Acts as a Self-Emulsifier to Prepare Hierarchically Porous Silk Fibroin Scaffolds through Emulsion-Ice Dual Templates. ACS Omega 2018, 3, 3396–3405. [Google Scholar] [CrossRef] [PubMed]
- Limpanuphap, S. Preparation of Porous Biomaterial Structures by a Solvent Casting/Particulate Leaching Technique. Asia-Pac. J. Sci. Technol. 2007, 12, 323–330. [Google Scholar]
Sample | Mw (×105 Da) | PDI | Tg (°C) | Tm (°C) | Tdeg (°C) | TC (°C) | ∆Hcc (J g−1) | ∆Hm (J g−1) | Xc (%) |
---|---|---|---|---|---|---|---|---|---|
P(3HB) | 5.2 | 1.8 | n.o. | 176 | 293 | 39 | 4.4 | 76.5 | 52.4 |
SCPL P(3HB) scaffold | 3.6 | 2.56 | n.o. | 174 | 278 | n.o | n.o | 44 | 30 |
Emulsion-templated P(3HB) scaffold | 3.8 | 1.75 | n.o. | 173 | 291 | n.o | n.o | 49.9 | 34.2 |
P(3HB-co-3HV) | 5.6 | 1.6 | 0.74 | 171 | 292 | 56 | 34.7 | 34.5 | 23.6 |
SCPL P(3HB-co-3HV) scaffold | 3.7 | 2.57 | −0.55 | 172 | 284 | 51 | 32.8 | 12.4 | 8.5 |
Emulsion-templated P(3HB-co-3HV) scaffold | 4 | 1.69 | −0.68 | 172 | 292 | 50 | 30.8 | 16.5 | 11.3 |
Biopolymer | Scaffold | Thickness (mm) | Porosity (%) | Contact Angle (θ) | Swelling (%) |
---|---|---|---|---|---|
P(3HB) | Cast film | 0.16 ± 0.01 | n.o. | 81.0 ± 0.8 | 0 |
SCPL | 1.50 ± 0.14 | 54 ± 4 | 72.0 ± 1.2 | 175.0 ± 0.1 | |
Emulsion | 0.61 ± 0.13 | 27 ± 16 | 79.7 ± 0.7 | 35.3 ± 21.0 | |
P(3HB-co-3HV) | Cast film | 0.19 ± 0.02 | n.o. | 78.0 ± 0.4 | 0 |
SCPL | 1.40 ± 0.08 | 63 ± 3 | 80.2 ± 1.1 | 171.0 ± 5.2 | |
Emulsion | 0.26 ± 0.02 | 49 ± 10 | 72.7 ± 0.1 | 36.2 ± 3.7 |
Biopolymer | Scaffold | Tensile Strength (MPa) | Elongation at Breaking (%) | Young’s Modulus (MPa) |
---|---|---|---|---|
P(3HB) | Cast film | 20.8 ± 0.92 | 20.4 ± 4.21 | 2.18 ± 0.08 |
Emulsion | 3.18 ± 0.19 | 13.6 ± 0.44 | 0.07 ± 0.01 | |
P(3HB-co-3HV) | Cast film | 8.90 ± 0.64 | 13.4 ± 2.12 | 1.38 ± 0.86 |
Emulsion | 3.35 ± 0.54 | 14.8 ± 1.74 | 0.11 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmail, A.; Pereira, J.R.; Sevrin, C.; Grandfils, C.; Menda, U.D.; Fortunato, E.; Oliva, A.; Freitas, F. Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Life 2021, 11, 935. https://doi.org/10.3390/life11090935
Esmail A, Pereira JR, Sevrin C, Grandfils C, Menda UD, Fortunato E, Oliva A, Freitas F. Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Life. 2021; 11(9):935. https://doi.org/10.3390/life11090935
Chicago/Turabian StyleEsmail, Asiyah, João R. Pereira, Chantal Sevrin, Christian Grandfils, Ugur Deneb Menda, Elvira Fortunato, Abel Oliva, and Filomena Freitas. 2021. "Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)" Life 11, no. 9: 935. https://doi.org/10.3390/life11090935
APA StyleEsmail, A., Pereira, J. R., Sevrin, C., Grandfils, C., Menda, U. D., Fortunato, E., Oliva, A., & Freitas, F. (2021). Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Life, 11(9), 935. https://doi.org/10.3390/life11090935