Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review
Abstract
:1. Introduction
2. The Hair Follicle: Biology and Embryology
3. Stem Cells Populations of the Hair Follicle
4. Bioengineering Strategies for Human HF Regeneration
4.1. Follicular Based Approaches
4.1.1. Dermal Papilla Cells (DPCs)
Isolation
Culture
4.1.2. Hair Follicle Stem Cells (HFSCs)
4.2. Non-Follicular Cell Sources for HF Bioengineering
5. Current Challenges and Future Perspectives in Regenerative Medicine Therapy for Hair Loss
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The Hair Follicle as a Dynamic Miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadshiew, I.M.; Foitzik, K.; Arck, P.C.; Paus, R. Burden of hair loss: Stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J. Investig. Dermatol. 2004, 123, 455–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasserot, A.P.; Geyfman, M.; Poloso, N.J. Androgenetic alopecia: Combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opin. Ther. Targets 2019, 23, 755–771. [Google Scholar] [CrossRef] [PubMed]
- Talavera-Adame, D.; Newman, D.; Newman, N. Conventional and novel stem cell based therapies for androgenic alopecia. Stem Cells Cloning Adv. Appl. 2017, 10, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- York, K.; Meah, N.; Bhoyrul, B.; Sinclair, R. Treatment review for male pattern hair-loss. Expert Opin. Pharmacother. 2020, 21, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.T. Hair restoration surgery: Challenges and solutions. Clin. Cosmet. Investig. Dermatol. 2015, 8, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.R.; Logarinho, E. Tissue engineering strategies for human hair follicle regeneration: How far from a hairy goal? Stem Cells Transl. Med. 2020, 9, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Bolognia, J.; Schaffer, J.; Cerroni, L. (Eds.) Dermatology, 4th ed.; Elsevier: Philadelphia, PA, USA, 2017; pp. 1145–1161. ISBN 978-0702062759. [Google Scholar]
- Francisco, C.M. Montagna Tricología. Enfermedades del Folículo Pilosebáceo, 3rd ed.; Grupo Aula Médica: Madrid, Spain, 1996; ISBN 84-7885-102-X. [Google Scholar]
- Paus, R.; Cotsarelis, G. The Biology of Hair Follicles. N. Engl. J. Med. 2014, 341, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Wight, T.N.; Kang, I.; Evanko, S.P.; Harten, I.A.; Chang, M.Y.; Pearce, O.M.T.; Allen, C.E.; Frevert, C.W. Versican—A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front. Immunol. 2020, 11, 512. [Google Scholar] [CrossRef] [Green Version]
- Žnidarič, M.; Žurga, Ž.M.; Maver, U. Design of In Vitro Hair Follicles for Different Applications in the Treatment of Alopecia—A Review. Biomedicines 2021, 9, 435. [Google Scholar] [CrossRef]
- Woo, W.A.; Coe, J.; Springgay, G.; Gupta, P. A rare combination of agminated blue naevus and naevus spilus. Clin. Exp. Dermatol. 2019, 44, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Veltri, A.; Lang, C.; Lien, W.H. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells 2018, 36, 22–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rishikaysh, P.; Dev, K.; Diaz, D.; Shaikh Qureshi, W.M.; Filip, S.; Mokry, J. Signaling involved in hair follicle morphogenesis and development. Int. J. Mol. Sci. 2014, 15, 1647–1670. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.Y.; Shin, Y.H.; Yoon, H.H.; Seo, Y.K.; Park, J.K. Hair follicular cell/organ culture in tissue engineering and regenerative medicine. Biochem. Eng. J. 2010, 48, 323–331. [Google Scholar] [CrossRef]
- Hardy, M.H. The secret life of the hair follicle. Trends Genet. 1992, 8, 55–61. [Google Scholar] [CrossRef]
- Krause, K.; Foitzik, K. Biology of the Hair Follicle: The Basics. Semin. Cutan. Med. Surg. 2006, 25, 2–10. [Google Scholar] [CrossRef]
- Dai, R.; Hua, W.; Xie, H.; Chen, W.; Xiong, L.; Li, L. The Human Skin-Derived Precursors for Regenerative Medicine: Current State, Challenges, and Perspectives. Stem Cells Int. 2018, 2018, 8637812. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Pasolli, H.A.; Fuchs, E. Dynamics Between Stem Cells, Niche and Progeny in the Hair Follicle. Cell 2011, 144, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Jaks, V.; Kasper, M.; Toftgård, R. The hair follicle—A stem cell zoo. Exp. Cell Res. 2010, 316, 1422–1428. [Google Scholar] [CrossRef]
- Amoh, Y.; Hoffman, R.M. Hair follicle-associated-pluripotent (HAP) stem cells. Cell Cycle 2017, 16, 2169–2175. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xing, Y.; Li, Y. Ientification and Characterization of Hair Follicle Stem Cells. Somatic Stem Cells; Humana Press: New York, NY, USA, 2018; pp. 69–80. [Google Scholar]
- Pastushenko, I.; Prieto-Torres, L.; Gilaberte, Y.; Blanpain, C. Células madre de la piel: En la frontera entre el laboratorio y la clínica. Parte I: Células madre epidérmicas. Actas Dermosifiliogr. 2015, 106, 725–732. [Google Scholar] [CrossRef]
- Li, B.; Hu, W.; Ma, K.; Zhang, C.; Fu, X. Are hair follicle stem cells promising candidates for wound healing? Expert Opin. Biol. Ther. 2019, 19, 119–128. [Google Scholar] [CrossRef]
- Çankirili, N.K.; Altundag, O.; Çelebi-Saltik, B. Skin Stem Cells, Their Niche and Tissue Engineering Approach for Skin Regeneration. Adv. Exp. Med. Biol. 2020, 1212, 107–126. [Google Scholar]
- Morozova, O.; Fagan, B.M.; Marra, M.; Pevny, L.; Miller, F.D. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 2009, 5, 610–623. [Google Scholar]
- Rahmani, W.; Abbasi, S.; Hagner, A.; Raharjo, E.; Kumar, R.; Hotta, A.; Magness, S.; Metzger, D.; Biernaskie, J. Hair Follicle Dermal Stem Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and Modulate Hair Type. Dev. Cell 2014, 31, 543–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houschyar, K.S.; Borrelli, M.R.; Tapking, C.; Popp, D.; Puladi, B.; Ooms, M.; Chelliah, M.P.; Rein, S.; Pförringer, D.; Thor, D.; et al. Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. Dermatology 2020, 236, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Peng, H.F.; Gopinath, S.; Tian, J.; Andreadis, S.T. Derivation of functional smooth muscle cells from multipotent human hair follicle mesenchymal stem cells. Tissue Eng. Part A 2010, 16, 2553–2564. [Google Scholar] [CrossRef]
- Jaworsky, C.; Kligman, A.M.; Murphy, G.F. Characterization of inflammatory infiltrates in male pattern alopecia: Implications for pathogenesis. Br. J. Dermatol. 1992, 127, 239–246. [Google Scholar] [CrossRef]
- Garza, L.A.; Yang, C.C.; Zhao, T.; Blatt, H.B.; Lee, M.; He, L.; Stanton, D.C.; Carrasco, L.; Spiegel, J.H.; Tobias, J.W.; et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J. Clin. Investig. 2011, 121, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Nilforoushzadeh, M.; Jameh, E.R.; Jaffary, F.; Abolhasani, E.; Keshtmand, G.; Zarkob, H.; Mohammadi, P.; Aghdami, N. Hair follicle generation by injections of adult human follicular epithelial and dermal papilla cells into nude mice. Cell J. 2017, 19, 259–268. [Google Scholar]
- Morris, R.J.; Liu, Y.; Marles, L.; Yang, Z.; Trempus, C.; Li, S.; Lin, J.S.; Sawicki, J.A.; Cotsarelis, G. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 2004, 22, 411–417. [Google Scholar] [CrossRef]
- Blanpain, C.; Lowry, W.E.; Geoghegan, A.; Polak, L.; Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004, 118, 635–648. [Google Scholar] [CrossRef]
- Paus, R.; Ito, N.; Takigawa, M.; Ito, T. The hair follicle and immune privilege. J. Investig. Derm. Symp. Proc. 2003, 8, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.J.; Lawrence, C.; Cserhalmi-Friedman, P.B.; Christiano, A.M.; Jahoda, C.A.B. Trans-gender induction of hair follicles. Nature 1999, 402, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Topouzi, H.; Logan, N.J.; Williams, G.; Higgins, C.A. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Exp. Dermatol. 2017, 26, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, M.; Zheng, Y.; Paus, R.; Stenn, K.S. The mesenchymal component of hair follicle neogenesis: Background, methods and molecular characterization. Exp. Dermatol. 2010, 19, 89–99. [Google Scholar] [CrossRef]
- Ito, Y.; Hamazaki, T.S.; Ohnuma, K.; Tamaki, K.; Asashima, M.; Okochi, H. Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. J. Investig. Dermatol. 2007, 127, 1052–1060. [Google Scholar] [CrossRef] [Green Version]
- Gledhill, K.; Gardner, A.; Jahoda, C.A.B. Isolation and establishment of hair follicle dermal papilla cell cultures. Methods Mol. Biol. 2013, 989, 285–292. [Google Scholar]
- Liu, G.; Bai, L.; Li, S.; Liu, H.; Zhu, Y.; Sun, H.; Gao, S.; Jiang, W.; Li, F. Isolation, culture and growth characteristics of dermal papilla cells from Rex rabbits. Tissue Cell 2020, 65, 101348. [Google Scholar] [CrossRef]
- Williams, D.; Profeta, K.; Stenn, K.S. Isolation and culture of follicular papillae from murine vibrissae: An introductory approach. Br. J. Dermatol. 1994, 130, 290–297. [Google Scholar] [CrossRef]
- Magerl, M.; Kauser, S.; Paus, R.; Tobin, D.J. Simple and rapid method to isolate and culture follicular papillae from human scalp hair follicles. Exp. Dermatol. 2002, 11, 381–385. [Google Scholar] [CrossRef]
- Rendl, M.; Lewis, L.; Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005, 3, 1910–1924. [Google Scholar] [CrossRef]
- Messenger, A. The culture of dermal papilla cells from human hair follicles. Br. J. Dermatol. 1984, 110, 685–689. [Google Scholar] [CrossRef]
- Jahoda, C.; Oliver, R. The growth of vibrissa dermal papilla cells in vitro. Br. J. Dermatol. 1981, 105, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, M.; Kobayashi, T.; Sasaki, T.; Shimizu, A.; Amagai, M. Restoration of the intrinsic properties of human dermal papilla in vitro. J. Cell Sci. 2012, 125, 4114–4125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel, S.; Higgins, C.A.; Cerise, J.E.; Dai, Z.; Chen, J.C.; Clynes, R.; Christiano, A.M. Clinical Medicine: Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci. Adv. 2015, 1, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, C.A.; Chen, J.C.; Cerise, J.E.; Jahoda CA, B.; Christiano, A.M. Microenvironmental reprogramming by threedimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. USA 2013, 110, 19679–19688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abaci, H.E.; Coffman, A.; Doucet, Y.; Chen, J.; Jacków, J.; Wang, E.; Guo, Z.; Shin, J.U.; Jahoda, C.; Christiano, A.M. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat. Commun. 2018, 9, 5301. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Sun, H.; Wei, H.; Qin, T.; Yang, Y.; Xu, X.; Zhao, S. Detecting the mechanism behind the transition from fixed two-dimensional patterned sika deer (Cervus nippon) dermal papilla cells to three-dimensional pattern. Int. J. Mol. Sci. 2021, 22, 4715. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Chan, C.C.; Lin, W.T.; Chiu, H.Y.; Tsai, R.Y.; Tsai, T.H.; Chan, J.Y.; Lin, S.J. Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials 2013, 34, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, S.; Liu, B.; Miao, Y.; Hu, Z. Use of extracellular matrix hydrogel from human placenta to restore hair-inductive potential of dermal papilla cells. Regen. Med. 2019, 14, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Soma, T.; Matsuzaki, T.; Kishimoto, J. Wnt activator CHIR99021-stimulated human dermal papilla spheroids contribute to hair follicle formation and production of reconstituted follicle-enriched human skin. Biochem. Biophys. Res. Commun. 2019, 516, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Liu, Y.; Yang, Z.; Nguyen, J.; Liang, F.; Morris, R.J.; Cotsarelis, G.S. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 2005, 11, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, X.; Yuan, J.; Zhu, M.; Fu, X.; Xu, R.-H.; Wu, C.; Wu, Y. TSA restores hair follicle-inductive capacity of skin-derived precursors. Sci. Rep. 2019, 9, 2867. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.M.-Y.; Tsai, C.-F.; Yen, C.-M.; Lin, M.-H.; Wang, W.-H.; Chan, C.-C.; Chen, C.-L.; Phua, K.K.; Pan, S.-H.; Plikus, M.V.; et al. Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials 2018, 167, 121–131. [Google Scholar] [CrossRef]
- Kalabusheva, E.; Terskikh, V.; Vorotelyak, E. Hair germ model in vitro via human postnatal keratinocyte-dermal papilla interactions: Impact of hyaluronic acid. Stem Cells Int. 2017, 2017, 9271869. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Liu, J.; Cai, T.; Guo, L.; Wang, S.; Wang, J.; Cao, Y.; Ge, J.; Jiang, Y. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors. Stem Cells Transl. Med. 2016, 5, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Takagi, R.; Ishimaru, J.; Sugawara, A.; Toyoshima, K.-E.; Ishida, K.; Ogawa, M.; Sakakibara, K.; Asakawa, K.; Kashiwakura, A.; Oshima, M.; et al. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. Sci. Adv. 2016, 2, 1500887. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.E.; Melton, D. Turning straw into gold: Directing cell fate for regenerative medicine. Nat. Rev. Genet. 2011, 12, 243–252. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Rabbani, C.C.; Gao, H.; Steinhart, M.R.; Woodruff, B.M.; Pflum, Z.E.; Kim, A.; Heller, S.; Liu, Y.; Shipchandler, T.Z.; et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 2020, 582, 399–404. [Google Scholar] [CrossRef]
- Gnedeva, K.; Vorotelyak, E.; Cimadamore, F.; Cattarossi, G.; Giusto, E.; Terskikh, V.V.; Terskikh, A.V. Derivation of hair-inducing cell from human pluripotent stem cells. PLoS ONE 2015, 10, e0116892. [Google Scholar] [CrossRef] [Green Version]
- Ocampo-Garza, J.; Griggs, J.; Tosti, A. New drugs under investigation for the treatment of alopecias. Expert Opin. Investig. Drugs 2019, 28, 275–284. [Google Scholar] [CrossRef]
- A Study Evaluating the Efficacy and Safety of SM04554 Topical Solution in Male Subjects with Androgenetic Alopecia. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03742518 (accessed on 22 November 2021).
- Barquero-Orias, D.; Muñoz Moreno-Arrones, O.; Vañó-Galván, S. Alopecia y microbioma: ¿futura diana terapéutica? Actas Dermosifiliogr. 2021, 112, 495–502. [Google Scholar] [CrossRef]
- Gupta, A.K.; Cole, J.; Deutsch, D.P.; Everts, P.A.; Niedbalski, R.P.; Panchaprateep, R.; Rinaldi, F.; Rose, P.T.; Sinclair, R.; Vogel, J.E.; et al. Platelet-Rich Plasma as a Treatment for Androgenetic Alopecia. Dermatol. Surg. 2019, 45, 1262–1273. [Google Scholar] [CrossRef] [Green Version]
- Gentile, P.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. Stem cells from human hair follicles: First mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investig. 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Zanzottera, F.; Lavezzari, E.; Trovato, L.; Icardi, A.; Graziano, A. Adipose Derived Stem Cells and Growth Factors Applied on Hair Transplantation. Follow-Up of Clinical Outcome. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Gentile, P.; Scioli, M.G.; Cervelli, V.; Orlandi, A.; Garcovich, S. Autologous Micrografts from Scalp Tissue: Trichoscopic and Long-Term Clinical Evaluation in Male and Female Androgenetic Alopecia. BioMed Res. Int. 2020, 2020, 7397162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, R.G.; Rosell, J.M.C.; Ceccarelli, G.; De Sio, C.; De Angelis, G.C.; Pinto, H.; Astarita, C.; Graziano, A. Progenitor-cell-enriched micrografts as a novel option for the management of androgenetic alopecia. J. Cell. Physiol. 2020, 235, 4587–4593. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, A.; Montero-Vilchez, T.; Sierra-Sánchez, Á.; Molina-Leyva, A.; Arias-Santiago, S. Advanced medical therapies in the management of non-scarring alopecia: Areata and androgenic alopecia. Int. J. Mol. Sci. 2020, 21, 8389. [Google Scholar] [CrossRef] [PubMed]
Stem Cell | Location | Main Markers | Origen |
---|---|---|---|
Interfollicular epidermal stem cells | Epidermis | Integrin α6 Keratin 5 (K5) Keratin 14 (K14) | Epidermal |
Hair Follicle Stem Cells (HFSCs) | Bulge | CD34 Keratin 15 (K15) Leucine-rich G-protein-coupled receptor 5 (Lgr5) Integrin α6 | Epidermal |
Stem cells of the Isthmus | Isthmus | MTS24 Leucine-rich G-protein-coupled receptor 6 (Lgr6) | Epidermal |
Stem cells of the Infundibulum | Infundibulum | Leucine-rich repeats and immunoglobulin-like domains protein 1 (Lrig1) | Epidermal |
Dermal Papilla Cells (Hair follicle-derived mesenchymal stem cells) | Dermal Papilla | Nestin Vimentin Fibronectin Sca-1 Markers for fibroblasts, such as collagen I | Mesenchymal |
Isolation Method | Species | Procedure | Advantages | Disadvantages |
---|---|---|---|---|
Enzymatic dissociation [43] | Mice, humans | Collagenase treatment of the proximal portion of HF; stop the reaction when DS is digested | Faster and less labour-intensive | Loss hair inductive properties in humans |
Surgical micro-dissection [42,44,45] | Mice, rats, humans | Dissect bulb of HF; cut the DS to expose the DP | Preserves the intact DP | Labour-intensive |
Inversion technique [39] | Humans | Variant of a surgical micro-dissection. A fine needle is used to invert the collagen capsule structure of the terminal bulb to the DP | Preserves the intact DP | Labour-intensive |
FACS-Sorting [46] | Mice | Sort FDP cells with fluoresce labelled surface markers (e.g., CD133 in mice) | Efficient with high purity | No proper markers for human DP have been identified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llamas-Molina, J.M.; Carrero-Castaño, A.; Ruiz-Villaverde, R.; Campos, A. Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review. Life 2022, 12, 117. https://doi.org/10.3390/life12010117
Llamas-Molina JM, Carrero-Castaño A, Ruiz-Villaverde R, Campos A. Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review. Life. 2022; 12(1):117. https://doi.org/10.3390/life12010117
Chicago/Turabian StyleLlamas-Molina, José María, Alejandro Carrero-Castaño, Ricardo Ruiz-Villaverde, and Antonio Campos. 2022. "Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review" Life 12, no. 1: 117. https://doi.org/10.3390/life12010117
APA StyleLlamas-Molina, J. M., Carrero-Castaño, A., Ruiz-Villaverde, R., & Campos, A. (2022). Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review. Life, 12(1), 117. https://doi.org/10.3390/life12010117