High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Co-occurrence of two or more variants in a particular gene;
- (2)
- Variants occurring mostly in the parkinsonian patients.
Statistical Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, H.; Gao, K.; Jankovic, J. TheVPS35gene and Parkinson’s disease. Mov. Disord. 2013, 28, 569–575. [Google Scholar] [CrossRef]
- De Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
- Berardelli, A.; Rothwell, J.C.; Thompson, P.D.; Hallett, M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 2001, 124, 2131–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noyce, A.; Msc, J.P.B.; Silveira-Moriyama, L.; Hawkes, C.H.; Giovannoni, G.; Lees, A.J.; Schrag, A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 2012, 72, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Kieburtz, K.; Wunderle, K.B. Parkinson’s disease: Evidence for environmental risk factors. Mov. Disord. 2013, 28, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lill, C.M. Genetics of Parkinson’s disease. Mol. Cell. Probes 2016, 30, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson’s Disease. Science 1997, 276, 2045–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Cai, F.; Zhang, S.; Zhang, S.; Song, W. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci. Rep. 2014, 4, 7298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydning, S.L.; Backe, P.H.; Sousa, M.M.L.; Iqbal, Z.; Øye, A.M.; Sheng, Y.; Yang, M.; Lin, X.; Slupphaug, G.; Nordenmark, T.H.; et al. NovelUCHL1 mutations reveal new insights into ubiquitin processing. Hum. Mol. Genet. 2016, 26, 1031–1040. [Google Scholar]
- Bilguvar, K.; Tyagi, N.K.; Ozkara, C.; Tüysüz, B.; Bakircioglu, M.; Choi, M.; Delil, S.; Caglayan, A.; Baranoski, J.F.; Erturk, O.; et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 3489–3494. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Q.; Tan, L.; Yu, J.-T. The role of the LRRK2 gene in Parkinsonism. Mol. Neurodegener. 2014, 9, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; et al. Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron 2004, 44, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greggio, E.; Jain, S.; Kingsbury, A.; Bandopadhyay, R.; Lewis, P.; Kaganovich, A.; van der Brug, M.P.; Beilina, A.; Blackinton, J.; Thomas, K.J.; et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 2006, 23, 329–341. [Google Scholar] [CrossRef]
- Di Maio, R.; Hoffman, E.K.; Rocha, E.M.; Keeney, M.T.; Sanders, L.H.; De Miranda, B.R.; Zharikov, A.; Van Laar, A.; Stepan, A.F.; Lanz, T.A.; et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 2018, 10, eaar5429. [Google Scholar] [CrossRef] [Green Version]
- Ross, O.A.; Soto-Ortolaza, A.I.; Heckman, M.G.; Aasly, J.O.; Abahuni, N.; Annesi, G.; Bacon, J.A.; Bardien, S.; Bozi, M.; Brice, A.; et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: A case–control study. Lancet Neurol. 2011, 10, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Martínez, J.; Krebs, C.E.; Makarov, V.; Gorostidi, A.; Martí-Massó, J.F.; Paisán-Ruíz, C. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J. Hum. Genet. 2015, 60, 637–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016, 139 (Suppl. 1), 216–231. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Tonelli, F.; Lis, P.; Macartney, T.; Polinski, N.K.; Martinez, T.N.; Chou, M.-Y.; Howden, A.J.; König, T.; Hotzy, C.; et al. The Parkinson’s disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem. J. 2018, 475, 1861–1883. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-F.; Chang, Y.-Y.; Lan, M.-Y.; Chen, P.-L.; Lin, C.-H. Identification of VPS35 p.D620N mutation-related Parkinson’s disease in a Taiwanese family with successful bilateral subthalamic nucleus deep brain stimulation: A case report and literature review. BMC Neurol. 2017, 17, 191. [Google Scholar] [CrossRef] [Green Version]
- Chartier-Harlin, M.-C.; Dachsel, J.C.; Vilarino-Guell, C.; Lincoln, S.J.; Lepretre, F.; Hulihan, M.M.; Kachergus, J.; Milnerwood, A.J.; Tapia, L.; Song, M.-S.; et al. Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease. Am. J. Hum. Genet. 2011, 89, 398–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buervenich, S.; Carmine, A.; Galter, D.; Shahabi, H.N.; Johnels, B.; Holmberg, B.; Ahlberg, J.; Nissbrandt, H.; Eerola, J.; Hellström, O.; et al. A Rare Truncating Mutation in ADH1C (G78Stop) Shows Significant Association With Parkinson Disease in a Large International Sample. Arch. Neurol. 2005, 62, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gegg, M.E.; Schapira, A.H.V. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J. 2018, 285, 3591–3603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeill, A.; Magalhaes, J.; Shen, C.; Chau, K.; Hughes, D.; Mehta, A.; Foltynie, T.; Cooper, J.M.; Abramov, A.; Gegg, M.; et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 2014, 137, 1481–1495. [Google Scholar] [CrossRef] [Green Version]
- Deutschlander, A.B.; Konno, T.; Soto-Beasley, A.I.; Walton, R.L.; van Gerpen, J.A.; Uitti, R.J.; Heckman, M.G.; Wszolek, Z.K.; Ross, O.A. Association of MAPT subhaplotypes with clinical and demographic features in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2020, 7, 1557–1563. [Google Scholar] [CrossRef]
- Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.K.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Hereditary Early-Onset Parkinson’s Disease Caused by Mutations in PINK1. Science 2004, 304, 1158–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.J.; Squitieri, F.; Ibanez, P.; Joosse, M.; et al. Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 2003, 299, 256–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Lee, S.B.; Lee, S.; Kim, Y.; Song, S.; Kim, S.; Bae, E.; Kim, J.; Shong, M.; Kim, J.-M.; et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H.; Tomiyama, H.; Tachibana, N.; Ogaki, K.; Li, Y.; Funayama, M.; Hashimoto, T.; Takashima, S.; Hattori, N. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 2010, 75, 1356–1361. [Google Scholar] [CrossRef]
- Zhao, T.; De Graaff, E.; Breedveld, G.J.; Loda, A.; Severijnen, L.A.; Wouters, C.H.; Verheijen, F.W.; Dekker, M.C.; Montagna, P.; Willemsen, R.; et al. Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syn-drome (PARK15). Public Libr. Sci. One 2011, 6, e16983. [Google Scholar]
- Hirano, A.; Kurland, L.T.; Krooth, R.S.; Lessell, S. Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain 1961, 84, 642–661. [Google Scholar] [CrossRef]
- Hirano, A.; Malamud, N.; Kurland, L.T. Parkinsonism-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain 1961, 84, 662–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdusek, D.C.; Salazar, A.M. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West New Guinea. Neurology 1982, 32, 107–126. [Google Scholar] [CrossRef] [PubMed]
- De Rijk, M.C.; Tzourio, C.; Breteler, M.M.; Dartigues, J.F.; Amaducci, L.; Lopez-Pousa, S.; Manubens-Bertran, J.M.; Alperovitch, A.; Rocca, W.A. Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1997, 62, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wermuth, L.; Joensen, P.; Bünger, N.; Jeune, B. High prevalence of Parkinson’s disease in the Faroe Islands. Neurology 1997, 49, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Mensikova, K.; Kanovsky, P.; Kaiserova, M.; Mikulicova, L.; Vastik, M.; Hlustik, P.; Jugas, P.; Ovecka, J.; Janout, V. Prevalence of neurodegenerative parkinsonism in an isolated population in south-eastern Moravia, Czech Republic. Eur. J. Epidemiol. 2013, 28, 833–836. [Google Scholar] [CrossRef]
- Bartoníková, T.; Menšíková, K.; Kolaříková, K.; Vodicka, R.; Vrtěl, R.; Otruba, P.; Kaiserová, M.; Vaštík, M.; Mikulicová, L.; Ovečka, J.; et al. New endemic familial parkinsonism in south Moravia, Czech Republic and its genetical background. Medicine 2018, 97, e12313. [Google Scholar] [CrossRef]
- Vodicka, R.; Vrtel, R.; Mensikova, K.; Kanovsky, P.; Dolinova, I.; Kolarikova, K.; Prochazka, M. Next Generation Sequencing Data Analysis Evaluation in Patients with Parkinsonism from a Genetically Isolated Population. Genom. Comput. Biol. 2017, 3, e44. [Google Scholar] [CrossRef] [Green Version]
- Menšíková, K.; Tučková, L.; Kolařiková, K.; Bartoníková, T.; Vodicka, R.; Ehrmann, J.; Vrtěl, R.; Procházka, M.; Kaňovský, P.; Kovacs, G.G. Atypical parkinsonism of progressive supranuclear palsy–parkinsonism (PSP-P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol. 2019, 137, 171–173. [Google Scholar] [CrossRef]
- Paisán-Ruíz, C.; Jain, S.; Evans, E.W.; Gilks, W.P.; Simón, J.; Van Der Brug, M.; De Munain, A.L.; Aparicio, S.; Gil, A.M.; Khan, N.; et al. Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson’s Disease. Neuron 2004, 44, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Kalia, L.V.; Lang, A.E.; Hazrati, L.-N.; Fujioka, S.; Wszolek, Z.K.; Dickson, D.W.; Ross, O.A.; Van Deerlin, V.M.; Trojanowski, J.Q.; Hurtig, H.I.; et al. Clinical Correlations With Lewy Body Pathology inLRRK2-Related Parkinson Disease. JAMA Neurol. 2015, 72, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.A.; Alcalay, R.N. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov. Disord. 2017, 32, 1504–1523. [Google Scholar] [CrossRef]
- Weil, R.S.; Lashley, T.; Bras, J.; Schrag, A.E.; Schott, J. Current concepts and controversies in the pathogenesis of Parkinson’s disease dementia and Dementia with Lewy Bodies. F1000Research 2017, 6, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, J.; Zeldenrust, F.M.; Huang, J.; Kasten, M.; Schaake, S.; Petkovic, S.; Madoev, H.; Grünewald, A.; Almuammar, S.; König, I.R.; et al. Genotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov. Disord. 2018, 33, 1857–1870. [Google Scholar] [CrossRef]
- Wallings, R.; Manzoni, C.; Bandopadhyay, R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J. 2015, 282, 2806–2826. [Google Scholar] [CrossRef]
- Arranz, A.M.; Delbroek, L.; Van Kolen, K.; Guimaraes, M.R.; Mandemakers, W.; Daneels, G.; Matta, S.; Calafate, S.; Shaban, H.; Baatsen, P.; et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J. Cell Sci. 2014, 128, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakimi, M.; Selvanantham, T.; Swinton, E.; Padmore, R.F.; Tong, Y.; Kabbach, G.; Venderova, K.; Girardin, S.E.; Bulman, D.E.; Scherzer, C.R.; et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J. Neural Transm. 2011, 118, 795–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardet, A.; Benita, Y.; Li, C.; Sands, B.E.; Ballester, I.; Stevens, C.; Korzenik, J.R.; Rioux, J.D.; Daly, M.J.; Xavier, R.J.; et al. LRRK2 Is Involved in the IFN-γ Response and Host Response to Pathogens. J. Immunol. 2010, 185, 5577–5585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, D.G.; Falchi, M.; O’Sullivan, S.S.; Bonifati, V.; Durr, A.; Bressman, S.; Brice, A.; Aasly, J.; Zabetian, C.P.; Goldwurm, S.; et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol. 2008, 7, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Lesage, S.; Dürr, A.; Tazir, M.; Lohmann, E.; Leutenegger, A.-L.; Janin, S.; Pollak, P.; Brice, A. LRRK2G2019S as a Cause of Parkinson’s Disease in North African Arabs. N. Engl. J. Med. 2006, 354, 422–423. [Google Scholar] [CrossRef] [PubMed]
- Ozelius, L.J.; Senthil, G.; Saunders-Pullman, R.; Ohmann, E.; Deligtisch, A.; Tagliati, M.; Hunt, A.L.; Klein, C.; Henick, B.; Hailpern, S.M.; et al. LRRK2G2019S as a Cause of Parkinson’s Disease in Ashkenazi Jews. N. Engl. J. Med. 2006, 354, 424–425. [Google Scholar] [CrossRef]
- Hui, K.Y.; Fernandez-Hernandez, H.; Hu, J.; Schaffner, A.; Pankratz, N.; Hsu, N.-Y.; Chuang, L.-S.; Carmi, S.; Villaverde, N.; Li, X.; et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci. Transl. Med. 2018, 10, eaai779510. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Deng, X.; Ng, E.Y.-L.; Allen, J.C.; Lim, S.-Y.; Ahmad-Annuar, A.; Tan, E.-K. Association of LRRK2 Haplotype with Age at Onset in Parkinson Disease. JAMA Neurol. 2018, 75, 127–128. [Google Scholar] [CrossRef]
- Heckman, M.G.; Elbaz, A.; Soto-Ortolaza, A.I.; Serie, D.J.; Aasly, J.O.; Annesi, G.; Auburger, G.; Bacon, J.A.; Boczarska-Jedynak, M.; Bozi, M.; et al. The protective effect of LRRK2 p.R1398H on risk of Parkinson’s disease is independent of MAPT and SNCA variants. Neurobiol. Aging 2013, 35, 266.e5–266.e14. [Google Scholar] [CrossRef] [Green Version]
- Paisã¡n-Ruiz, C. LRRK2gene variation and its contribution to Parkinson disease. Hum. Mutat. 2009, 30, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Paisán-Ruiz, C.; Washecka, N.; Nath, P.; Singleton, A.B.; Corder, E.H. Parkinson’s Disease and Low Frequency Alleles Found Together ThroughoutLRRK2. Ann. Hum. Genet. 2009, 73, 391–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setó-Salvia, N.; Clarimón, J.; Pagonabarraga, J.; Pascual-Sedano, B.; Campolongo, A.; Combarros, O.; Mateo, J.I.; Regaña, D.; Martínez-Corral, M.; Marquié, M.; et al. Dementia Risk in Parkinson Disease. Arch. Neurol. 2011, 68, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.W.; Pei, Z.; Jiang, H.; Dawson, V.L.; Dawson, T.M.; A Ross, C. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 2006, 9, 1231–1233. [Google Scholar] [CrossRef]
- Gilsbach, B.K.; Ekortholt, A. Structural biology of the LRRK2 GTPase and kinase domains: Implications for regulation. Front. Mol. Neurosci. 2014, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar]
- Greggio, E.; Cookson, M.R. Leucine-Rich Repeat Kinase 2 Mutations and Parkinson’s Disease: Three Questions. ASN Neuro 2009, 1, AN20090007. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Dzamko, N.; Prescott, A.; Davies, P.; Liu, Q.; Yang, Q.; Lee, J.-D.; Patricelli, M.P.; Nomanbhoy, T.K.; Alessi, D.R.; et al. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat. Chem. Biol. 2011, 7, 203–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. of Subjects; F/M | Mean Age F | Mean Age M | Mean Age at Disease Onset F | Mean Age at Disease Onset M | |
---|---|---|---|---|---|
Patients | 30/32 | 71.8 (±12) | 75.0 (±11) | 61.5 (±9.5) | 62.7 (±10) |
Control subjects | 42/27 | 75.09 (±9.65) | 73.2 (±10.04) | - | - |
Variant | Coordinate | rs ID | EURMAF | Prediction NetGene2 | Prediction Human Splicing Finder | Prediction SIFT/PolyPhen-2/ Mutationtaster/DANN | PhyloP |
---|---|---|---|---|---|---|---|
c.572-82A > G | 12:40634203 | rs11564187 | 0.02126 | — | creation of new donor site | — | 0.1 |
c.2242-22C > T | 12:40677655 | rs36220738 | 0.02081 | — | — | — | −0.8 |
c.4317 + 12delT | 12:40703047 | rs200829235 | 0.02146 | possible break of splicing site | potential alteration of mRNA splicing | — | 1.5 |
c.6241A > G | 12:40740686 | rs33995883 | 0.01917 | creation of acceptor splice site | activation of an exonic cryptic donor site | 0.081/0.983/0.9874/0.9981 | 7.1 |
c.7391-44T > C | 12:40760764 | rs3789329 | 0.02297 | — | — | — | −0.5 |
Pat. No. | Gender/Age | Age at the Disease Onset | Clinical Phenotype | Clinical Signs Present at Examination |
---|---|---|---|---|
1 (3) | M/75 | 66 | MSA-C | Atypical parkinsonian syndrome with static tremor of upper limbs, bilateral neocerebellar symptoms, rigidity, and postural instability; without any cognitive or executive dysfunction. |
2 (17) | M/79 | 68 | IPD | Typical rigidity-dominant PD with rigidity, bradykinesia, and rest tremor of upper limbs, advanced stage with the presence of late motor complications (patient treated with continuous intrajejunal infusion of L-DOPA gel). |
3 (22) | M/66 | 45 | Tremulous form of atypical parkinsonism with orthostatic hypotension | Static and rest tremor of upper limbs, static tremor of the head, and axial propriospinal myoclonus, without any cognitive or executive dysfunction. |
4 (23) | M/61 | 49 | IPD | Typical tremor-dominant PD with rest tremor of upper limbs, bradykinesia, rigidity with right-sided predominance, and postural instability; cognitive dysfunction with deficit of logical memory, visual memory, anterograde memory, and recognition capacity. |
5 (24) | M/83 | 68 | PSP-P | Atypical parkinsonian syndrome with unilateral (right) rigidity and bradykinesia, lack of tremor, and cognitive deterioration at the level of mild dementia. |
6 (26) | F/85 | 65 | PSP-P | Atypical parkinsonian syndrome with asymmetric (right) rigidity and bradykinesia, lack of tremor, and mild cognitive deficit. |
7 (11/32) | F/60 | 46 | IPD | PD with asymmetric bradykinesia and rigidity predominant on the left side, good dopaminergic responsiveness, orthostatic hypotension, depression, occasional hallucinations, and mild cognitive deficit. |
8 (19/32) | M/51 | 46 | IPD | PD with asymmetric bradykinesia and rigidity predominant on the right side, gait disorder, and good dopaminergic responsiveness. |
9 (21/32) | M/48 | 43 | IPD | PD with tremor of the left upper limb, bradykinesia, hypokinesia and rigidity with left predominance, and good dopaminergic responsiveness |
10 (3/32) | F/69 | Clinical data are not available |
Number of Samples | Frequency of Haplotype |
---|---|
All patient samples from the study (P) n = 10 (62) | 0.080 |
Controls from the study C1, n = 1 (69) | 0.007 |
Controls from the study C2, n = 7 (100) | 0.035 |
Controls from the study C3, n = 48 (2516) | 0.0095 |
Gujarati Indian in Houston n = 11 (103) | 0.053 |
Tuscans in Italy n = 8 (107) | 0.037 |
Sri Lankan Tamil in the UK n = 5 (102) | 0.024 |
Iberians in Spain n = 5 (107) | 0.023 |
Colombians in Medellin n = 2 (94) | 0.021 |
Puerto Rican in Puerto Rico n = 4 (104) | 0.019 |
Bengali in Bangladesh n = 3 (86) | 0.017 |
Punjabi in Lahore, Pakistan n = 2 (96) | 0.01 |
Mexican Ancestry in Los Angeles, US n = 1 (64) | 0.007 |
Finnish in Finland n = 1 (99) | 0.005 |
Peruvian in Lima, Peru n = 1 (85) | 0.005 |
Utah residents with Northern and Western European ancestry n = 1 (99) | 0.005 |
African Caribbean in Barbados n = 1 (96) | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolarikova, K.; Vodicka, R.; Vrtel, R.; Stellmachova, J.; Prochazka, M.; Mensikova, K.; Bartonikova, T.; Furst, T.; Kanovsky, P.; Geryk, J. High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic. Life 2022, 12, 121. https://doi.org/10.3390/life12010121
Kolarikova K, Vodicka R, Vrtel R, Stellmachova J, Prochazka M, Mensikova K, Bartonikova T, Furst T, Kanovsky P, Geryk J. High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic. Life. 2022; 12(1):121. https://doi.org/10.3390/life12010121
Chicago/Turabian StyleKolarikova, Kristyna, Radek Vodicka, Radek Vrtel, Julia Stellmachova, Martin Prochazka, Katerina Mensikova, Tereza Bartonikova, Tomas Furst, Petr Kanovsky, and Jan Geryk. 2022. "High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic" Life 12, no. 1: 121. https://doi.org/10.3390/life12010121
APA StyleKolarikova, K., Vodicka, R., Vrtel, R., Stellmachova, J., Prochazka, M., Mensikova, K., Bartonikova, T., Furst, T., Kanovsky, P., & Geryk, J. (2022). High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic. Life, 12(1), 121. https://doi.org/10.3390/life12010121