Assessing the Bacterial Communities Composition from Differently Treated Agarwood via 16S rRNA Gene Metabarcoding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Amplification Agarwood Microbiome Analysis
2.3. Library Construction and HiSeq Sequencing
2.4. Statistical Analysis and Data Records
3. Results
3.1. Species Diversity Curve Analysis
3.2. Venn Graph Analysis
3.3. Alpha Diversity Index Analysis Observed Species Index
3.4. Analysis of Bacterial Community Composition and Species Richness
3.5. Principal Component Analysis
3.6. Quality Analysis of Sequencing
3.7. LefSe Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saad, S.D.; Yasser, M.; Tabana, L.; Ahmed, H.; Mohamed, B.; Khadeer, A.; Aman, S.A.M.; Amin, M.S.A.M. In vitro antimetastatic activity of agarwood (Aquilaria crassna) essential oils against pancreatic cancer cells. Alex. J. Med. 2015, 52, 141–150. [Google Scholar]
- Hashim, H.Y.; Kerr, P.G.; Abbas, P.; Salleh, H.M. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochem-istry and pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wei, J.H.; Gao, Z.H.; Zhang, Z. A review of quality assessment and grading for agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Kumeta, Y.; Ito, M. Characterization of α-humulene synthases responsible for the production of sesquiterpenes induced by methyl jasmonate in Aquilaria cell culture. J. Nat. Med. 2016, 70, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Chen, D.L.; Wei, J.H.; Feng, J.; Zhang, Z.; Yang, Y.; Zheng, W. Four new 2-(2-phenylethyl) chromone derivatives from Chinese agarwood produced via the whole-tree agarwood-inducing technique. Molecules 2016, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.L.; Liu, Y.Y.; Wei, J.H.; Yang, Y.; Zhang, Z.; Huang, J.Q.; Chen, H.Q.; Liu, Y.J. Production of high-quality agarwood in Aquilaria sinensis trees via whole-tree agarwood-induction technology. Chin. Chem. Lett. 2012, 23, 727–730. [Google Scholar] [CrossRef]
- Mohamed, R.; Jong, P.L.; Zali, M.S. Fungal diversity in wounded stems of Aquilaria malaccensis. Fungal. Divers. 2010, 43, 67–74. [Google Scholar] [CrossRef]
- Cui, J.L.; Xiao, P.G.; Guo, S.X. Field test and analysis for fungus inducing the formation of agilawood from Aquilaria sinensis. Chin. Pharm. J. 2012, 47, 1614–1617. [Google Scholar]
- Bhore, S.J.; Preveena, J.; Kandasamy, K.I. Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species. Pharm. Res. 2013, 5, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Kuang, Z.Y.; Song, M.W.; Zhang, R. Community structure and difference of endophtic bacteria in Aquilaria sinensis with and without agarwood. Chin. J. Chin. Mater. Med. 2015, 40, 63–67. [Google Scholar]
- Wong, Y.F.; Chin, S.T.; Perlmutter, P.; Marriott, P.J. Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant–fungus interaction in Aquilaria malaccensis. J. Chromatogr. 2015, 1387, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Ali, N.A.M.; Jamil, M.; Rahiman, M.H.F.; Tajuddin, S.N.; Taib, M.N. A review study of agarwood oil and its quality analysis. J. Teknol. 2014, 68, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Talukdar, N.C.; Khan, M. A simple metabolite profiling approach reveals critical biomolecular linkages in fragrant agarwood oil production from Aquilaria malaccensis–a traditional agro-based industry in North East India. Curr. Sci. 2015, 108, 63–71. [Google Scholar]
- Han, J.; Song, Y.; Liu, Z.G.; Hu, Y.H. Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). FEMS. Microbiol. Lett. 2011, 322, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Huang, X.D. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa). World. J. Microb. Biot. 2014, 30, 389–397. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2011, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Y.H.; Yao, S.; Wang, H.; Cao, Y.H.; Li, J.; Bai, F.R.; Qiu, C.Z.; Feng, X.; Dai, W.K.; et al. Diversity and distribution of endophytic bacterial community in the Noni (Morinda citrifolia L.) plant. Afr. J. Microbiol. Res. 2015, 9, 1649–1657. [Google Scholar]
- Yang, R.X.; Liu, P.; Ye, W.Y. Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves. Braz. J. Microbiol. 2017, 48, 695–705. [Google Scholar] [CrossRef]
- Hussain, M.; Debnath, B.; Qasim, M.; Bamisile, B.S.; Islam, W.; Hameed, M.S.; Wang, L.; Qiu, D. Role of saponins in plant defense against specialist herbivores. Molecules 2019, 24, 2067. [Google Scholar] [CrossRef] [Green Version]
- Vasconsuelo, A.; Boland, R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci. 2007, 172, 861–875. [Google Scholar] [CrossRef]
- Wang, Y.C.; Hussain, M.; Jiang, Z.B.; Wang, Z.H.; Gao, J.; Ye, F.X.; Run, Q.M.; Li, H. Aquilaria species (Thymelaeaceae) distribution, volatile and non-volatile phytochemicals, pharmacological uses, agarwood grading system, and induction methods. Molecules 2021, 26, 7708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, J.Q.; Yuan, Y.; Yang, Q.; Zhou, L.Y.; Liu, J.; Huang, L.Q. Analysis of bacteria distribution characteristics in different layers of agarwood based on Hiseq sequencing. Chin. J. Chin. Mater. Med. 2020, 10, 2374–2381. [Google Scholar]
- Mago, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Glckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gao, J.Q.; Chen, S.Y.L.; Jiang, C.; Yuan, Y.; Jiao, S.G.; Meng, H.B.; Chai, X.Y.; Huang, L.Q. Analysis of bacterial community structure and diversity during mountain-agarwood formation. Chin. J. Chin. Mater. Med. 2020, 45, 3651–3658. [Google Scholar]
- Chen, X.Y.; Sui, C.; Liu, Y.Y.; Yang, Y.; Liu, P.W.; Zhang, Z.; Wei, J.H. Agarwood formation induced by fermentation liquid of Lasiodiplodia theobromae, the dominating fungus in wounded wood of Aquilaria sinensis. Curr. Microbiol. 2017, 74, 460–468. [Google Scholar] [CrossRef]
- Du, T.Y.; Dao, C.J.; Ausana, M.; Steven, S.; Abdallah, E.; Salim, A.; Nakarin, S.; Samantha, K.; Saowaluck, T. Diversity and Biosynthetic Activities of Agarwood Associated Fungi. Diversity 2022, 14, 211. [Google Scholar] [CrossRef]
- He, L.M.; Ye, J.R. Endophytic bacteria: Research advances and biocontrol applications. J. NanJing Forestry Univ. Nat. 2014, 38, 153–157. [Google Scholar]
- Mou, H.Q.; Zhu, S.F.; Xu, X.; Zhao, W.J. An overview of research on phytoplasma-induced diseases. Plant Protection 2011, 37, 17–22. [Google Scholar]
- Huang, A.C.; Jiang, T.; Liu, Y.X.; Bai, Y.C.; Reed, J.; Qu, B.Y.; Goossens, A.; Niitzmann, H.W.; Bai, Y.; Osbourn, A. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 2019, 364, 546. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Wu, H.X.; He, X.Y.; Zhang, H.H.; Miao, F.; Liang, Z.S. Promoting tanshinone synthesis of Salvia miltiorrhiza root by a seed endophytic fungus, Phoma herbarum D603. Chin. J. Chin. Mater. Med. 2020, 45, 65–71. [Google Scholar]
Morphological Characteristic | Grade | ||
---|---|---|---|
I (IA) | II (DA) | III (FLA) | |
Resin color | Black, brown, or red | Yellowish or reddish-brown | Khaki, yellowish, or a little brown |
Density/Sinkage g/cm3 | Dense and solid and sinks in the water ρ ≥ 1 | Dense and sinks in the water, but not to the bottom 0.520 ≤ ρ < 1.00 | Light and floats on the water 0.380 ≤ ρ < 0.520 |
Resin content | High | Middle | Little |
Room temperature: Scent/Aroma Heating: | Natural fragrance, cool feeling, and frankincense aroma | Slightly obvious fragrance | Weak fragrance |
Strong penetration of the fragrance | Obvious fragrance | Slightly obvious fragrance | |
Texture/Weight | Hard texture, heavy feeling | The texture is a little hard and a little heavy | Loose texture, sense of lightness |
Taste | Bitter, spicy, hemp, sweet, easy to stick to the teeth, no sense of fiber | Sense of fiber and sawdust after chewing | Sawdust after chewing |
Incense-formation time | More than 5 years | More than 3 years | More than 1 year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hussain, M.; An, X.; Jiang, X.; Mao, R. Assessing the Bacterial Communities Composition from Differently Treated Agarwood via 16S rRNA Gene Metabarcoding. Life 2022, 12, 1697. https://doi.org/10.3390/life12111697
Wang Y, Hussain M, An X, Jiang X, Mao R. Assessing the Bacterial Communities Composition from Differently Treated Agarwood via 16S rRNA Gene Metabarcoding. Life. 2022; 12(11):1697. https://doi.org/10.3390/life12111697
Chicago/Turabian StyleWang, Yichen, Mubasher Hussain, Xincheng An, Xiaojun Jiang, and Runqian Mao. 2022. "Assessing the Bacterial Communities Composition from Differently Treated Agarwood via 16S rRNA Gene Metabarcoding" Life 12, no. 11: 1697. https://doi.org/10.3390/life12111697
APA StyleWang, Y., Hussain, M., An, X., Jiang, X., & Mao, R. (2022). Assessing the Bacterial Communities Composition from Differently Treated Agarwood via 16S rRNA Gene Metabarcoding. Life, 12(11), 1697. https://doi.org/10.3390/life12111697