Pre-Lens Tear Meniscus Height, Lipid Layer Pattern and Non-Invasive Break-Up Time Short-Term Changes with a Water Gradient Silicone Hydrogel Contact Lens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Subjects
2.3. Materials
2.4. Examination Procedure
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CL | Contact Lens |
CLDEQ8 | Contact Lens Dry Eye Questionnaire 8 |
EDTA | Ethylenediaminetetraacetic Acid |
FDA | Food and Drug Administration |
FNIBUT | First Non-Invasive Break-Up Time |
ICP | Integrated Clinical Platform |
LLT | Lipid Layer Thickness |
LOT | Lid Opening Time |
MGD | Meibomian Gland Dysfunction |
MNIBUT | Mean Non-Invasive Break-Up Time |
NIBUT | Non-Invasive Break-Up Time |
NIDUT | Non-Invasive Dehydration-Up Time |
OSA | Ocular Surface Analyzer |
SCL | Soft Contact Lens |
SH-SCL | Silicone Hydrogel Soft Contact Lens |
SPEED | Standard Patient Evaluation of Eye Dryness |
TMH | Tear Meniscus Height |
References
- Tahhan, N.; Naduvilath, T.J.; Woods, C.; Papas, E. Review of 20 years of soft contact lens wearer ocular physiology data. Contact Lens Anterior Eye 2022, 45, 101525. [Google Scholar] [CrossRef]
- Jacob, J.T. Biocompatibility in the development of silicone-hydrogel lenses. Eye Contact Lens 2013, 39, 13–19. [Google Scholar] [CrossRef]
- Eftimov, P.B.; Yokoi, N.; Peev, N.; Paunski, Y.; Georgiev, G.A. Relationships between the material properties of silicone hydrogels: Desiccation, wettability and lubricity. J. Biomater. Appl. 2021, 35, 933–946. [Google Scholar] [CrossRef]
- Tauste, A.; Ronda, E.; Baste, V.; Bråtveit, M.; Moen, B.E.; Seguí Crespo, M. del M. Ocular surface and tear film status among contact lens wearers and non-wearers who use VDT at work: Comparing three different lens types. Int. Arch. Occup. Environ. Health 2018, 91, 327–335. [Google Scholar] [CrossRef]
- Musgrave, C.S.A.; Fang, F. Contact lens materials: A materials science perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef] [Green Version]
- Lira, M.; Silva, R. Effect of Lens Care Systems on Silicone Hydrogel Contact Lens Hydrophobicity. Eye Contact Lens 2017, 43, 89–94. [Google Scholar] [CrossRef]
- Markoulli, M.; Kolanu, S. Contact lens wear and dry eyes: Challenges and solutions. Clin. Optom. 2017, 9, 41–48. [Google Scholar] [CrossRef]
- McMonnies, C.W. Could contact lens dryness discomfort symptoms sometimes have a neuropathic basis? Eye Vis. 2021, 8, 12. [Google Scholar] [CrossRef]
- Rex, J.; Knowles, T.; Zhao, X.; Lemp, J.; Maissa, C.; Perry, S.S. Elemental Composition at Silicone Hydrogel Contact Lens Surfaces. Eye Contact Lens 2018, 44, S221–S226. [Google Scholar] [CrossRef]
- Guillon, M.; Patel, T.; Patel, K.; Gupta, R.; Maissa, C.A. Quantification of contact lens wettability after prolonged visual device use under low humidity conditions. Contact Lens Anterior Eye 2019, 42, 386–391. [Google Scholar] [CrossRef]
- Eftimov, P.; Yokoi, N.; Peev, N.; Georgiev, G.A. Impact of air exposure time on the water contact angles of daily disposable silicone hydrogels. Int. J. Mol. Sci. 2019, 20, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.E.; Kim, S.R.; Park, M. Oxygen permeability of soft contact lenses in different pH, osmolality and buffering solution. Int. J. Ophthalmol. 2015, 8, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Tighe, B.J. A decade of silicone hydrogel development: Surface properties, mechanical properties, and ocular compatibility. Eye Contact Lens 2013, 39, 4–12. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Patel, P.J.; Soni, P.D.; Desai, A.R.; Desai, D.T.; Shukla, M.R.; Ranch, K.M.; Shah, S.A.; Shah, D.O. Novel Poly(vinylpyrrolidone)-Coated Silicone Contact Lenses to Improve Tear Volume during Lens Wear: In Vitro and in Vivo Studies. ACS Omega 2020, 5, 18148–18154. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Li, P.; Beachley, V.; McDonnell, P.; Elisseeff, J.H. A hyaluronic acid-binding contact lens with enhanced water retention. Contact Lens Anterior Eye 2015, 38, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Liu, P.Y.; Lin, M.H.; Lu, C.J.; Chou, H.Y.; Nian, C.Y.; Jiang, Y.T.; Hsu, Y.H.H. Applications of hyaluronic acid in ophthalmology and contact lenses. Molecules 2021, 26, 2485. [Google Scholar] [CrossRef] [PubMed]
- García-Montero, M.; Rico-del-Viejo, L.; Llorens-Quintana, C.; Lorente-Velázquez, A.; Hernández-Verdejo, J.L.; Madrid-Costa, D. Randomized crossover trial of silicone hydrogel contact lenses. Contact Lens Anterior Eye 2019, 42, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Nichols, J.J. Advances in thickness measurements and dynamic visualization of the tear film using non-invasive optical approaches. Prog. Retin. Eye Res. 2017, 58, 28–44. [Google Scholar] [CrossRef]
- Muntz, A.; Subbaraman, L.N.; Sorbara, L.; Jones, L. Tear exchange and contact lenses: A review. J. Optom. 2015, 8, 2–11. [Google Scholar] [CrossRef]
- Graham, A.D.; Lin, M.C. The relationship of pre-corneal to pre-contact lens non-invasive tear breakup time. PLoS ONE 2021, 16, e0247877. [Google Scholar] [CrossRef]
- Bai, Y.; Ngo, W.; Nichols, J.J. Characterization of the thickness of the tear film lipid layer using high resolution microscopy. Ocul. Surf. 2019, 17, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Binotti, W.W.; Bayraktutar, B.; Ozmen, M.C.; Cox, S.M.; Hamrah, P. A Review of Imaging Biomarkers of the Ocular Surface. Eye Contact Lens 2020, 46, S84–S105. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D.P.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U.; et al. TFOS DEWS II Tear Film Report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, H.; Ochi, S.; Yamashita, T.; Inoue, Y.; Kiryu, J. Role of the water gradient structure in inhibiting thin aqueous layer break in silicone hydrogel-soft contact lens. Transl. Vis. Sci. Technol. 2021, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.L.; Keay, L.; Hickson-Curran, S.B.; Gleason, W.J. Cutoff score and responsiveness of the 8-item Contact Lens Dry Eye Questionnaire (CLDEQ-8) in a Large daily disposable contact lens registry. Contact Lens Anterior Eye 2016, 39, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, M.C.; Capote-Puente, R.; García-Romera, M.-C.; De-Hita-Cantalejo, C.; Bautista-Llamas, M.-J.; Silva-Viguera, C.; Sánchez-González, J.-M. Dry eye disease and tear film assessment through a novel non-invasive ocular surface analyzer: The OSA protocol. Front. Med. 2022, 9, 938484. [Google Scholar] [CrossRef]
- Pult, H.; Nichols, J.J. A review of meibography. Optom. Vis. Sci. 2012, 89, E760–E769. [Google Scholar] [CrossRef] [Green Version]
- Baudouin, C.; Aragona, P.; Van Setten, G.; Rolando, M.; Irkeç, M.; Del Castillo, J.B.; Geerling, G.; Labetoulle, M.; Bonini, S. Diagnosing the severity of dry eye: A clear and practical algorithm. Br. J. Ophthalmol. 2014, 98, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Soft Lens Design and Fitting. In Contact Lens Practice; Efron, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 86–94.e1. ISBN 978-0-7020-6660-3. [Google Scholar]
- Marx, S.; Eckstein, J.; Sickenberger, W. Objective analysis of pre-lens tear film stability of daily disposable contact lenses using ring mire projection. Clin. Optom. 2020, 12, 203–211. [Google Scholar] [CrossRef]
- Llorens-Quintana, C.; Mousavi, M.; Szczesna-Iskander, D.; Iskander, D.R. Non-invasive pre-lens tear film assessment with high-speed videokeratoscopy. Contact Lens Anterior Eye 2018, 41, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Montani, G.; Martino, M. Tear film characteristics during wear of daily disposable contact lenses. Clin. Ophthalmol. 2020, 14, 1521–1531. [Google Scholar] [CrossRef]
- Vidal-Rohr, M.; Wolffsohn, J.S.; Davies, L.N.; Cerviño, A. Effect of contact lens surface properties on comfort, tear stability and ocular physiology. Contact Lens Anterior Eye 2018, 41, 117–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itokawa, T.; Suzuki, T.; Iwashita, H.; Hori, Y. Comparison and evaluation of prelens tear film stability by different noninvasive in vivo methods. Clin. Ophthalmol. 2020, 14, 4459–4468. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Marx, S.; Wittekind, J.; Sickenberger, W. Subjective comparison of pre-lens tear film stability of daily disposable contact lenses using ring mire projection. Clin. Optom. 2020, 12, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, S.; Sickenberger, W. A novel in-vitro method for assessing contact lens surface dewetting: Non-invasive keratograph dry-up time (NIK-DUT). Contact Lens Anterior Eye 2017, 40, 382–388. [Google Scholar] [CrossRef]
- Guillon, M.; Dumbleton, K.A.; Theodoratos, P.; Wong, S.; Patel, K.; Banks, G.; Patel, T. Association between contact lens discomfort and pre-lens tear film kinetics. Optom. Vis. Sci. 2016, 93, 881–891. [Google Scholar] [CrossRef]
- Muhafiz, E.; Demir, M.S. Ability of non-invasive tear break-up time to determine tear instability in contact lens wearers. Int. Ophthalmol. 2022, 42, 959–968. [Google Scholar] [CrossRef] [PubMed]
Material | Lehfilcon A |
---|---|
Base Curve | 8.4 mm |
Diameter | 14.2 mm |
FDA Group | V-B |
Wetting Agent | Phosphoryl Choline |
Material/Water (%) | 45/55 |
Center Thickness | 0.08 mm |
Oxygen Transmission | 154 Dk/t |
Modulus | 0.6 MPa |
UV Blocking | Class 1 |
UVA Blocking | >90% |
UVB Blocking | >99% |
Light Filter | HEVL |
Dynamic Light | No absorption |
Variable | Value |
---|---|
Gender (%) | |
Male | 14 (22.6) |
Female | 48 (77.4) |
Nationality (%) | |
Italian | 21 (67.75) |
Spanish | 4 (12.90) |
Mexican | 2 (6.46) |
Slovak | 1 (3.22) |
Polish | 1 (3.22) |
Germany | 1 (3.22) |
Austrian | 1 (3.22) |
Age (Years) | 22.23 ± 1.39 (19 to 25) |
Sphere (Diopters) | −2.64 ± 1.15 (−5.50 to −0.50) |
Cylinder (Diopters) | −0.44 ± 0.37 (−1.50 to 0.00) |
Axis (Degrees, °) | 111.44 ± 70.08 (5.00 to 180.00) |
Visual Acuity (Log MAR) | −0.03 ± 0.05 (−0.10 to 0.10) |
Visual Acuity (Decimal) | 1.07 ± 0.10 (0.80 to 1.20) |
Flat Corneal Meridian (mm) | 7.87 ± 0.31 (7.40 to 8.74) |
Steep Corneal Meridian (mm) | 7.73 ± 0.29 (7.25 to 8.61) |
Mean Corneal Meridian (mm) | 7.80 ± 0.30 (7.37 to 8.67) |
Contact Lens Power (Diopters) | −2.56 ± 1.12 (−5.00 to −0.75) |
Schirmer Test (mm) | 30.21 ± 8.43 (6.00 to 35.00) |
CLDEQ8 (Score Points) | 11.32 ± 5.56 (1.00 to 29.00) |
SPEED Test (Score Points) | 7.39 ± 4.39 (0.00 to 15.00) |
Superior Eyelid MGD (%) | 28.87 ± 15.11 (10.30 to 96.20) |
Inferior Eyelid MGD (%) | 49.69 ± 17.86 (17.00 to 87.30) |
Variable | Before Lehfilcon A | 30-min with Lehfilcon A | p Value |
---|---|---|---|
Conjunctival Redness Classification (Efron Scale) | 1.08 ± 0.63 (0.00 to 2.00) | 1.15 ± 0.56 (0.00 to 2.00) | 0.10 |
Lipid Layer Thickness Interferometry (Guillon Pattern) | 2.05 ± 1.53 (0.00 to 5.00) | 1.90 ± 1.73 (0.00 to 5.00) | 0.23 |
Tear Meniscus Height (Millimeters) | 0.21 ± 0.04 (0.11 to 0.32) | 0.21 ± 0.06 (0.07 to 0.32) | 0.76 |
First NIBUT (Seconds) | 5.03 ± 1.04 (3.60 to 7.80) | 4.63 ± 0.89 (3.64 to 8.52) | 0.01 * |
Mean NIBUT (Seconds) | 15.19 ± 9.54 (4.50 to 49.76) | 21.27 ± 11.97 (5.44 to 56.48) | <0.01 * |
Lid Opening Time (Seconds) | 26.36 ± 19.72 (5.04 to 93.60) | 38.58 ± 21.78 (7.04 to 107.04) | <0.01 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capote-Puente, R.; Bautista-Llamas, M.-J.; Manzoni, C.; Sánchez-González, J.-M. Pre-Lens Tear Meniscus Height, Lipid Layer Pattern and Non-Invasive Break-Up Time Short-Term Changes with a Water Gradient Silicone Hydrogel Contact Lens. Life 2022, 12, 1710. https://doi.org/10.3390/life12111710
Capote-Puente R, Bautista-Llamas M-J, Manzoni C, Sánchez-González J-M. Pre-Lens Tear Meniscus Height, Lipid Layer Pattern and Non-Invasive Break-Up Time Short-Term Changes with a Water Gradient Silicone Hydrogel Contact Lens. Life. 2022; 12(11):1710. https://doi.org/10.3390/life12111710
Chicago/Turabian StyleCapote-Puente, Raúl, María-José Bautista-Llamas, Caterina Manzoni, and José-María Sánchez-González. 2022. "Pre-Lens Tear Meniscus Height, Lipid Layer Pattern and Non-Invasive Break-Up Time Short-Term Changes with a Water Gradient Silicone Hydrogel Contact Lens" Life 12, no. 11: 1710. https://doi.org/10.3390/life12111710
APA StyleCapote-Puente, R., Bautista-Llamas, M. -J., Manzoni, C., & Sánchez-González, J. -M. (2022). Pre-Lens Tear Meniscus Height, Lipid Layer Pattern and Non-Invasive Break-Up Time Short-Term Changes with a Water Gradient Silicone Hydrogel Contact Lens. Life, 12(11), 1710. https://doi.org/10.3390/life12111710