Chemical Characterization of Clove, Basil and Peppermint Essential Oils; Evaluating Their Toxicity on the Development Stages of Two-Spotted Spider Mites Grown on Cucumber Leaves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Biological Tests
2.3.1. Construction of the Fertility Life Table and Determination of Developmental Time
2.3.2. Essential Oil Isolation and Identification
Isolation by Steam Distillation
Identification of EOs by GC-MS
2.4. Toxicity Test
LC50 and LC90 for Adult Males and Females of T. urticae
2.5. Statistical Analysis
3. Results
3.1. Essential Oil Composition
3.2. Influence of Host Plants on T. urticae
3.2.1. Effect on Immature Development Time
3.2.2. Effect on Generation Time, Life Span and Sex Ratio
3.2.3. Effect on Longevity of T. urticae
3.3. Influence of Different Essential Oils Concentrations on Two—Spotted Spider Mite
3.3.1. Effect on Adults of Two—Spotted Spider Mite T. urticae
3.3.2. Effect on Immature Stages of Two—Spotted Spider Mite T. urticae
3.4. Developmental Periods (in Days) of Tetranychus urticae Females Reared on Leaves of Cucumber Plant Toshka (SC 349) Cultivar Treated with Essential Oils
3.4.1. Effect on Egg Deposition
3.4.2. Effect on Life Cycle and Life Span
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benelli, G.; Pavela, R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Ind. Crops Prod. 2018, 117, 382–392. [Google Scholar] [CrossRef]
- Bougherra, H.H.; Bedini, S.; Flamini, G.; Cosci, F.; Belhamel, K.; Conti, B. Pistacia lentiscus essential oil has repellent effect against three major insect pests of pasta. Ind. Crops Prod. 2015, 63, 249–255. [Google Scholar] [CrossRef]
- Murungi, L.K.; Kirwa, H.; Torto, B. Differences in essential oil content of berries and leaves of Solanum sarrachoides (Solanaceae) and the effects on oviposition of the tomato spider mite (Tetranychus evansi). Ind. Crops Prod. 2013, 46, 73–79. [Google Scholar] [CrossRef]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; Gado, A.R.; Nader, M.M.; Saad, A.M.; El-Tahan, A.M.; Taha, A.E.; Salem, H.M.; El-Tarabily, K.A. Hot red pepper powder as a safe alternative to antibiotics in organic poultry feed: An updated overview. Poult. Sci. 2022, 101, 101684. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Elakkad, H.A.; El-Tahan, A.M.; Alshahrani, O.A.; Alshilawi, M.S.; El-Sayed, H.; Amin, S.A.; Ahmed, A.I. Flavoring and extending the shelf life of cucumber juice with aroma compounds-rich herbal extracts at 4 °C through controlling chemical and microbial fluctuations. Saudi J. Biol. Sci. 2022, 29, 346–354. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Saad, A.M.; Salem, H.M.; Ashry, N.M.; Ghanima, M.M.A.; Shukry, M.; Swelum, A.A.; Taha, A.E.; El-Tahan, A.M. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: A comprehensive review. Poult. Sci. 2022, 101, 101584. [Google Scholar] [CrossRef]
- Alagawany, M.; El-Saadony, M.; Elnesr, S.; Farahat, M.; Attia, G.; Madkour, M.; Reda, F. Use of lemongrass essential oil as a feed additive in quail’s nutrition: Its effect on growth, carcass, blood biochemistry, antioxidant and immunological indices, digestive enzymes and intestinal microbiota. Poult. Sci. 2021, 100, 101172. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Zabermawi, N.M.; Zabermawi, N.M.; Burollus, M.A.; Shafi, M.E.; Alagawany, M.; Yehia, N.; Askar, A.M.; Alsafy, S.A.; Noreldin, A.E. Nutritional aspects and health benefits of bioactive plant compounds against infectious diseases: A review. Food Rev. Int. 2021, 1–23. [Google Scholar] [CrossRef]
- El-Tarabily, K.A.; El-Saadony, M.T.; Alagawany, M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Elwan, H.A.; Elnesr, S.S.; Abd El-Hack, M.E. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J. Biol. Sci. 2021, 28, 5145–5156. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, J.; Tak, J.-H. Synergistic mechanism of insecticidal activity in basil and mandarin essential oils against the tobacco cutworm. J. Pest Sci. 2021, 94, 1119–1131. [Google Scholar] [CrossRef]
- Tak, J.H.; Jovel, E.; Isman, M.B. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest Manag. Sci. 2016, 72, 474–480. [Google Scholar] [CrossRef]
- Johnson, W.T.; Lyon, H.H. Insects That Feed on Trees and Shrubs (Comstock Book), 2nd ed.; Comstock Publishing Associates: Ithaca, NY, USA, 1991. [Google Scholar]
- Lee, Y.-S.; Song, M.-H.; Ahn, K.-S.; Lee, K.-Y.; Kim, J.-W.; Kim, G.-H. Monitoring of acaricide resistance in two-spotted spider mite (Tetranychus urticae) populations from rose greenhouses in Korea. J. Asia Pac. Entomol. 2003, 6, 91–96. [Google Scholar] [CrossRef]
- Dağlı, F.; Tunç, Í. Dicofol resistance in Tetranychus cinnabarinus: Resistance and stability of resistance in populations from Antalya, Turkey. Pest Manag. Sci. Former. Pestic. Sci. 2001, 57, 609–614. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; Nahed, A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F. Necrotic enteritis in broiler chickens: Disease characteristics and prevention using organic antibiotic alternatives–a comprehensive review. Poult. Sci. 2021, 101, 101590. [Google Scholar] [CrossRef]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; ALmoshadak, A.S.; Shafi, M.E.; Albaqami, N.M.; Saad, A.M.; El-Tahan, A.M.; Desoky, E.-S.M.; Elnahal, A.S.; Almakas, A.; Abd El-Mageed, T.A. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi J. Biol. Sci. 2021, 28, 7349–7359. [Google Scholar] [CrossRef]
- James, D.G.; Price, T.S. Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J. Econ. Entomol. 2002, 95, 729–732. [Google Scholar] [CrossRef]
- Marcic, D. The effects of clofentezine on life-table parameters in two-spotted spider mite Tetranychus urticae. Exp. Appl. Acarol. 2003, 30, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Skorupska, A. Resistance of apple cultivars to two-spotted spider mite, Tetranychus urticae Koch (Acarina, Tetranychidae). Part I. Bionomy of two-spotted spider mite on selected cultivars of apple trees. J. Plant Prot. Res. 2004, 44, 75–80. [Google Scholar]
- Kazak, C.; Kibritci, C. Population parameters of Tetranychus cinnabarinus Boisduval (Prostigmata: Tetranychidae) on eight strawberry cultivars. Turk. J. Agric. For. 2008, 32, 19–27. [Google Scholar]
- Attia, S.; Grissa, K.L.; Ghrabi, Z.G.; Mailleux, A.C.; Lognay, G.; Hance, T. Acaricidal activity of 31 essential oils extracted from plants collected in Tunisia. J. Essent. Oil Res. 2012, 24, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Solomon, G.; Aman, D.; Bachheti, R. Fatty acids, metal composition, nutritional value and physicochemical parameters of Lepidium sativium seed oil collected from Ethiopia. Int. Food Res. J. 2016, 23, 827–831. [Google Scholar]
- Yadav, R.; Kaushik, R.; Gupta, D. The health benefits of Trigonella foenum-graecum: A review. Int. J. Eng. Res. Appl. 2011, 1, 32–35. [Google Scholar]
- Reddy, D.S.; Latha, M.P. Novel acaricide toxicities on Tetranychus urticae infesting Piper betle. Indian J. Agric. Sci. 2016, 86, 506–511. [Google Scholar]
- Kumari, S.; Chauhan, U.; Kumari, A.; Nadda, G. Comparative toxicities of novel and conventional acaricides against different stages of Tetranychus urticae Koch (Acarina: Tetranychidae). J. Saudi Soc. Agric. Sci. 2017, 16, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Vassiliou, V.A.; Kitsis, P. Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus. J. Econ. Entomol. 2013, 106, 1848–1854. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, N.; Zebitz, C.P.; Kraus, W.; Moores, G.D.; Nauen, R. Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pestic. Biochem. Phys. 2001, 69, 131–142. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Current status and recent developments in biopesticide use. Agriculture 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Da Camara, C.A.; Akhtar, Y.; Isman, M.B.; Seffrin, R.C.; Born, F.S. Repellent activity of essential oils from two species of Citrus against Tetranychus urticae in the laboratory and greenhouse. Crop Prot. 2015, 74, 110–115. [Google Scholar] [CrossRef]
- Ribeiro, N.; Camara, C.; Ramos, C. Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chil. J. Agric. Res. 2016, 76, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Neves, R.; Da Camara, C.A. Chemical composition and acaricidal activity of the essential oils from Vitex agnus-castus L. (Verbenaceae) and selected monoterpenes. An. Acad. Bras. Cienc. 2016, 88, 1221–1233. [Google Scholar] [CrossRef] [Green Version]
- Naher, N.; Islam, T.; Haque, M.; Parween, S. Effects of native plants and IGRs on the development of Tetranychus urticae Koch (Acari: Tetranychidae). Univ. J. Zool. Rajshahi. Univ. 2006, 25, 19–22. [Google Scholar] [CrossRef]
- Périno, S.; Chemat-Djenni, Z.; Petitcolas, E.; Giniès, C.; Chemat, F. Downscaling of industrial turbo-distillation to laboratory turbo-clevenger for extraction of essential oils. Application of concepts of green analytical chemistry. Molecules 2019, 24, 2734. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Racioppi, R.; Bufo, S.A.; Camele, I. In vitro study of biological activity of four strains of Burkholderia gladioli pv. agaricicola and identification of their bioactive metabolites using GC–MS. Saudi J. Biol. Sci. 2017, 24, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, C.; Wang, J.; You, Y.; Chen, F. Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Manag. Sci. 2010, 66, 1025–1030. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics; McGraw Hill: New York, NY, USA, 1960; p. 481. [Google Scholar]
- Awad, S.; Mostafa, E.; Salem, A.; Mahrous, M. Development and reproduction of the two-spotted red spider mite, Tetranychus urticae Koch as influenced by feeding on leaves of three solanaceous vegetable crops under laboratory conditions. J. Entomol. 2018, 15, 69–74. [Google Scholar]
- Awad, S.E. Studies on Some Mites Associated with Certain Deciduous Fruit Trees at Sharkia Governorate. Ph.D. Thesis, University of Zagazig, Zagazig, Egypt, 2013. [Google Scholar]
- Abdelaal, D.M.; Mostafa, E.M.; Hendawi, M.Y.; Basha, A.E. Bio-ecological studies on the two-spotted red spider mite, Tetranychus urticae Koch on some leguminous crops at Sharkia Governorate, Egypt. Zagazig J. Agric. Res. 2015, 42, 323–332. [Google Scholar]
- Modarres Najafabadi, S.S. Comparative biology and fertility life tables of Tetranychus urticae Koch (Acari: Tetranychidae) on different common bean cultivars. Int. J. Acarol. 2012, 38, 706–714. [Google Scholar] [CrossRef]
- Abou-Kassem, D.E.; Mahrose, K.M.; El-Samahy, R.A.; Shafi, M.E.; El-Saadony, M.T.; Abd El-Hack, M.E.; Emam, M.; El-Sharnouby, M.; Taha, A.E.; Ashour, E.A. Influences of dietary herbal blend and feed restriction on growth, carcass characteristics and gut microbiota of growing rabbits. Ital. J. Anim. Sci. 2021, 20, 896–910. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Elsadek, M.F.; Mohamed, A.S.; Taha, A.E.; Ahmed, B.M.; Saad, A.M. Effects of chemical and natural additives on cucumber juice’s quality, shelf life, and safety. Foods 2020, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.M.; El-Saadony, M.T.; Mohamed, A.S.; Ahmed, A.I.; Sitohy, M.Z. Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour-based noodles. Int. J. Food Sci. Technol. 2021, 56, 3255–3268. [Google Scholar] [CrossRef]
- Saad, A.M.; Mohamed, A.S.; El-Saadony, M.T.; Sitohy, M.Z. Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts. LWT -Food Sci. Technol. 2021, 148, 111668. [Google Scholar] [CrossRef]
- Saad, A.M.; Sitohy, M.Z.; Ahmed, A.I.; Rabie, N.A.; Amin, S.A.; Aboelenin, S.M.; Soliman, M.M.; El-Saadony, M.T. Biochemical and functional characterization of kidney bean protein alcalase-hydrolysates and their preservative action on stored chicken meat. Molecules 2021, 26, 4690. [Google Scholar] [CrossRef] [PubMed]
- Reda, F.; El-Saadony, M.; El-Rayes, T.; Farahat, M.; Attia, G.; Alagawany, M. Dietary effect of licorice (Glycyrrhiza glabra) on quail performance, carcass, blood metabolites and intestinal microbiota. Poult. Sci. 2021, 100, 101266. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Pavela, R.; Canale, A.; Mehlhorn, H.; Benelli, G. Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: A review. Res. Vet. Sci. 2016, 109, 1–9. [Google Scholar] [CrossRef]
- Mansour, F.; Ravid, U.; Putievsky, E. Studies of the effects of essential oils isolated from 14 species of Labiatae on the carmine spider mite, Tetranychus cinnabarinus. Phytoparasitica 1986, 14, 137–142. [Google Scholar] [CrossRef]
- Eldoksch, H.; Dewer, Y.; Kenawyl, A. Fumigant Toxic action and repellent effects of piant essential oils against two spotted spider mite Tetranychus urticae koch (Acari: Tetranychidae). Alex. Sci. Exch. J. 2012, 4, 254–260. [Google Scholar]
- Mahmoud, R.H.; Kassem, E.M. Laboratory and semi-field evaluation and effect of clove essential-oil against two-spotted spider-mite Tetranychus urticae, Koch. (Acari: Tetranychidae). J. Plant Prot. Pathol. 2022, 13, 59–61. [Google Scholar]
- Srivastava, A.K.; Singh, V.K. Action of bait containing eugenol (Syzygium aromaticum) on biochemical changes in fresh water snail Lymnaea acuminata. Biochem. Mol. Biol. 2015, 3, 1–6. [Google Scholar]
- Barua, A.; Roy, S.; Handique, G.; Bora, F.R.; Rahman, A.; Pujari, D.; Muraleedharan, N. Clove oil efficacy on the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae) infesting tea plants. Proc. Zool. Soc. 2017, 70, 92–96. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, H.K.; Kim, G.-H. Toxicity and effects of essential oils and their components on Dermanyssus gallinae (Acari: Dermanyssidae). Exp. Appl. Acarol. 2019, 78, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Pasay, C.; Mounsey, K.; Stevenson, G.; Davis, R.; Arlian, L.; Morgan, M.; Vyszenski-Moher, D.; Andrews, K.; McCarthy, J. Acaricidal activity of eugenol based compounds against scabies mites. PLoS ONE 2010, 5, e12079. [Google Scholar] [CrossRef] [Green Version]
- Sparagano, O.; Khallaayoune, K.; Duvallet, G.; Nayak, S.; George, D. Comparing terpenes from plant essential oils as pesticides for the poultry red mite (Dermanyssus gallinae). Transbound. Emerg. Dis. 2013, 60, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Conti, B.; Bocchino, R.; Cosci, F.; Ascrizzi, R.; Flamini, G.; Bedini, S. Essential oils against Varroa destructor: A soft way to fight the parasitic mite of Apis mellifera. J. Apic. Res. 2020, 59, 774–782. [Google Scholar] [CrossRef]
- Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides. Parasitol. Res. 2014, 113, 565–592. [Google Scholar] [CrossRef]
- Tewary, D.K.; Bhardwaj, A.; Sharma, A.; Sinha, A.K.; Shanker, A. Bioactivity and structure–activity relationship of natural methoxylated phenylpropenes and their derivatives against Aphis craccivora Koch (Hemiptera: Aphididae). J. Pest. Sci. 2006, 79, 209–214. [Google Scholar] [CrossRef]
- Abd-Allah, G.E.; Habashy, M.G.; Shalaby, M.M. Efficacy of Mint Derivatives, Mentha Spicata L., Against Two Species of Tetranychus Spp. (Acari: Tetranychidae) and the Predator, Neoseiulus sp. Egypt. Acad. J. Biol. Sci. A Entomol. 2022, 15, 63–70. [Google Scholar] [CrossRef]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- De-Oliveira, A.C.; Ribeiro-Pinto, L.F.; Paumgartten, F.J. In vitro inhibition of CYP2B1 monooxygenase by β-myrcene and other monoterpenoid compounds. Toxicol. Lett. 1997, 92, 39–46. [Google Scholar] [CrossRef]
- Ryan, M.; Byrne, O. Plant-insect coevolution and inhibition of acetylcholinesterase. J. Chem. Ecol. 1988, 14, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
EOs Name | Family Name | Used Part | Oil Yield (%) |
---|---|---|---|
Clove (Syzygium aromaticum) | Myrtaceae | buds | 2 |
Peppermint, (Mentha piperita) | Lamiaceae | Leaves | 1.5 |
Basil, (Ocimum basilicum) | Lamiaceae | Leaves | 0.8 |
Components | RT (min) | % Area in GC-FID | KI | |
---|---|---|---|---|
1 | a-Pinene | 11,883 | 0.41 | 58.3 |
2 | Camphene | 13,750 | 0.01 | 45 |
3 | b-Pinene | 15,817 | 1.45 | 81.7 |
4 | β-Myrcene | 19,318 | 0.46 | 431.8 |
5 | Bornylene | 20,283 | 0.28 | 228.3 |
6 | Eugenol | 20.62 | 3.45 | 262 |
7 | 1.8-Cineole | 21,133 | 6.18 | 313.3 |
8 | 2-Hexenal | 21,160 | 0.04 | 216 |
9 | Sulcatone | 26,850 | 0.01 | 585 |
10 | Fenchone | 29,750 | 0.01 | 475 |
11 | 3-Methyl-hepta-1,6-dien-3-ol | 30,233 | 0.01 | 523.3 |
12 | b-Thujone | 30,858 | 3.27 | 285.8 |
13 | Caprylyl-acetate | 33,367 | 0.05 | 536.7 |
14 | 2,4-Heptadienal | 33,800 | 0.04 | 580 |
15 | Linalool | 36,750 | 32.5 | 775 |
16 | Germacrene D | 37,867 | 0.14 | 886.7 |
17 | a-Bergamotene | 38,350 | 3.16 | 835 |
18 | Terpinene-4-ol | 38,497 | 0.03 | 849.7 |
19 | Benzeneacetaldehyde | 39,900 | 0.04 | 490 |
20 | Borneol L | 42,435 | 0.38 | 743.5 |
21 | delta-Guaiene | 43,133 | 0.51 | 813.3 |
22 | Geraniol | 47,667 | 0.04 | 1066.7 |
23 | Methylcinnamate | 56,533 | 41.39 | 1453.3 |
24 | a-Cadinol | 58,833 | 4.5 | 1383.3 |
Total identified (%) | 98.36 |
Components | RT (min) | % Area in GC-FID | KI | |
---|---|---|---|---|
1 | Eugenol | 20.64 | 50.2 | 264 |
2 | Isoeugenol | 20.7 | 16.7 | 270 |
3 | Caryophyllene | 22.22 | 19.3 | 322 |
4 | Humulene | 23.12 | 3.5 | 412 |
5 | α-Amorphene | 23.78 | 0.5 | 478 |
6 | Acetyleugenol | 24.96 | 7.6 | 396 |
Total identified (%) | 97.8 |
Components | RT (min) | % Area in GC-FID | KI | |
---|---|---|---|---|
1 | α-pinene | 11.88 | 0.39 | 58 |
2 | Sabinene | 13.79 | 0.2 | 279 |
3 | α-Terpinene | 16.13 | 0.11 | 413 |
4 | γ-Terpinene | 18.33 | 0.3 | 633 |
5 | 1,8-Cineole | 21.13 | 4.1 | 613 |
6 | Menthone | 23.60 | 22.82 | 860 |
7 | Mentho furan | 23.90 | 11.79 | 890 |
8 | Menthol | 24.81 | 42.13 | 981 |
9 | Iso-Menthol | 25.23 | 1.89 | 623 |
10 | NeoisoMenthol | 25.37 | 0.99 | 637 |
11 | Pulegone | 27.65 | 2.39 | 665 |
12 | Neo-Menthyl acetate | 28.92 | 1.3 | 792 |
13 | Piperitone | 28.46 | 0.5 | 746 |
14 | Menthyl acetate | 29.77 | 4.35 | 877 |
15 | E-Caryophyllene | 35.51 | 1.85 | 751 |
16 | Germacrene D | 38.16 | 2.9 | 1016 |
Total identified (%) | 98.01 |
Cucumber Cultivar | Immature Development Time (Days) | Longevity | Generation Time | Life Span | Sex Ratio | ||||
---|---|---|---|---|---|---|---|---|---|
Egg | Larva | Protonymoh | Deutonymph | Total Immature Time | (Days) | (Days) | (Days) | (Male: Female) | |
Chief (SC 4145) | 3.34 ± 0.05 a | 3.41 ± 0.07 b | 3.25 ± 0.04 b | 2.94 ± 0.09 ab | 12.99 ± 0.25 a | 14.98 ± 1.55 a | 27.97 ± 1.72 a | 14.90 ± 0.45 a | 1:4.12 * |
Raian (CB898) | 3.15 ± 0.04 b | 3.23 ± 0.06 b | 3.21 ± 0.04 b | 2.92 ± 0.09 ab | 12.30 ± 0.23 b | 13.95 ± 1.64 b | 26.25 ± 1.97 ab | 13.85 ± 0.41 b | 1:4.37 * |
Toshka (SC 349) | 3.10 ± 0.03 b | 3.16 ± 0.5 a | 3.06 ± 0.06 a | 2.71 ± 0.08 b | 12.24 ± 0.22 b | 12.88 ± 2.04 b | 25.12 ± 2.68 ab | 13.59 ± 0.40 b | 1:5.71 * |
Cultivars | Pre-Oviposition Period | Oviposition Period | Post-Oviposition Period |
---|---|---|---|
Chief (SC 4145) | 1.91 ± 0.09 a | 10.63 ± 0.21 a | 2.44 ± 0.08 a |
Raian (CB898) | 1.55 ± 0.07 b | 9.96 ± 0.18 b | 2.39 ± 0.09 b |
Toshka (SC 349) | 1.35 ± 0.05 c | 9.21 ± 0.13 c | 2.27 ± 0.06 c |
L.S.D 0.05 | 0.243 | 0.628 | 0.345 |
Concentration (µLL−1 Air) | % Mortality, LC50, LC90, Confidence Limits and Slop Values 24 and 48 h Post-Treatment | ||||||||
---|---|---|---|---|---|---|---|---|---|
Clove Oil | Basil Oil | Peppermint Oil | |||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
0.0 (control) | 0.00 ± 0.0 e | 2.00 ± 0.1 e | 4.00 ± 0.2 d | 0.00 ± 0.0 e | 2.00 ± 0.2 e | 4.00 ± 0.1 e | 0.00 ± 0.0 e | 2.00 ± 0.0 e | 4.00 ± 0.6 d |
50.0 | 55.80 ± 0.1 d | 58.60 ± 0.2 d | 62.20 ± 0.1 c | 24.60 ± 0.1 d | 32.20 ± 0.7 d | 38.20 ± 0.0 d | 34.20 ± 0.6 c | 44.60 ± 0.3 d | 48.80 ± 0.8 c |
100.0 | 68.60 ± 0.3 c | 72.00 ± 0.5 c | 76.00 ± 0.3 b | 36.40 ± 0.2 c | 46.80 ± 0.1 c | 54.60 ± 0.2 c | 46.60 ± 0.7 b | 56.80 ± 0.6 c,d | 62.40 ± 0.5 bc |
150.0 | 78.80 ± 0.6 b | 84.20 ± 0.9 b | 90.00 ± 0.6 a,b | 50.20 ± 0.8 b | 62.60 ± 0.2 b | 66.80 ± 0.4 b | 58.80 ± 0.9 b | 64.20 ± 0.0 c | 68.60 ± 0.2 b,c |
200.0 | 100.00 ± 0.0 a | 100.00 ± 0.0 a | 100.00 ± 0.6 a | 62.40 ± 0.5 a | 70.80 ± 0.8 a,b | 76.00 ± 0.9 a,b | 78.20 ± 0.2 a,b | 80.20 ± 0.9 b | 84.80 ± 0.6 b |
400.0 | 100.00 ± 0.0 a | 100.00 ± 0.0 a | 100.00 ± 0.0 a | 68.80 ± 0.2 a | 80.40 ± 0.7 a | 86.20 ± 0.1 a | 88.60 ± 0.8 a | 92.40 ± 0.1 a | 96.60 ± 0.8 a |
LC50 | 46.80 | 138.40 | 68.80 | ||||||
(Confidence limits) | (36.60–42.40) | (106.80–1650.20) | (102.80–120.20) | ||||||
LC90 | 150.00 | 442.20 | 325.00 | ||||||
(Confidence limits) | (197.20–228.80) | (396.20–456.40) | (246.40–388.60) | ||||||
Slope value ± SE | 5.21 ± 0.72 | 1.59 ± 0.23 | 1.66 ± 0.66 |
Concentration (µLL−1 Air) | Mean % Mortality, LC50, LC90, Confidence Limits and Slop Values 24 and 48 h Post-Treatment | ||||||||
---|---|---|---|---|---|---|---|---|---|
Clove Oil | Basil Oil | Peppermint Oil | |||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
0.0 (control) | 0.00 ± 0.0 d | 2.00 ± 0.1 e | 4.00 ± 0.1 e | 0.00 ± 0.0 e | 2.00 ± 0.3 f | 4.00 ± 0.1 e | 0.00 ± 0.2 f | 2.00 ± 0.3 f | 4.00 ± 0.2 e |
50.0 | 42.40 ± 0.1 b,c | 54.40 ± 0.6 d | 60.20 ± 0.4 d | 22.20 ± 0.1 d | 30.20 ± 0.1 e | 36.40 ± 0.2 d | 30.60 ± 0.0 e | 42.40 ± 0.2 e | 48.00 ± 0.3 d |
100.0 | 56.80 ± 0.2 b | 66.00 ± 0.8 c | 72.00 ± 0.1 c | 30.60 ± 0.2 c | 42.40 ± 0.3 d | 50.80 ± 0.5 c | 42.60 ± 0.2 d | 54.40 ± 0.9 d | 60.20 ± 0.5 c,d |
150.0 | 74.80 ± 0.6 a,b | 80.20 ± 0.3 b | 88.00 ± 0.2 ab | 48.20 ± 0.5 b | 60.20 ± 0.8 b,c | 66.00 ± 0.9 b,c | 56.80 ± 0.1 c | 62.60 ± 0.2 c | 66.60 ± 0.3 c |
200.0 | 80.20 ± 0.1 a | 92.20 ± 0.3 a | 100.00 ± 0.0 a | 56.40 ± 0.4 a,b | 68.80 ± 0.9 b | 74.40 ± 0.2 b | 70.20 ± 0.3 b | 74.20 ± 0.3 b | 84.40 ± 0.8 b |
400.0 | 96.60 ± 0.7 a | 100.00 ± 0.5 a | 100.00 ± 0.0 a | 60.20 ± 0.8 a | 78.00 ± 0.2 a | 84.60 ± 0.1 a | 82.20 ± 0.8 a | 86.40 ± 0.4 a | 94.40 ± 0.3 a |
LC50 | 58.80 | 158.80 | 125.40 | ||||||
(Confidence limits) | (54.60–68.20) | (156.00–186.40) | (142.20–168.60) | ||||||
LC90 | 186.72 | 396.20 | 296.20 | ||||||
(Confidence limits) | (197.20–228.80) | (426.20–456.40) | (440.40–520.60) | ||||||
Slope value ±SE | 5.75 ± 0.8 | 1.42 ± 0.2 | 1.88 ± 0.4 |
Tested Materials | No. of Eggs Deposited/5 Adult Females | LSD0.01 | |||||
---|---|---|---|---|---|---|---|
1st Day | 2nd Day | 3rd Day | 4th Day | 5th Day | Generalmean | ||
Control (Toshka (SC(349) | 24.20 ± 0.82 a,E | 25.40 ± 0.95 a,D | 25.80 ± 0.50 a,D | 28.60 0.26 a,B | 34.20 ± 0.90 a,A | 27.74 ± 0.68 a,C | 1.36 |
Clove oil | 13.00 ± 0.82 c,E | 15.25 ± 0.86 c,D | 18.60 ± 0.59 c,C | 20.22 ± 0.22 e,B | 26.80 ± 0.74 d,A | 18.76 ± 0.64 d,C | 1.22 |
Basil oil | 16.80 ± 0.44 b,E | 19.20 ± 0.76 b,D | 21.60 ± 0.60 b,C | 24.80 ± 0.36 b,B | 32.00 ± 0.55 b,A | 22.88 ± 0.54 b,,C | 1.09 |
Peppermint oil | 13.00 ± 0.62 c,E | 15.60 ± 0.66 c,D | 18.80 ± 0.75 c,C | 23.20 ± 0.44 c,B | 29.20 ± 0.52 c,A | 19.96 ± 0.59 c,C | 1.16 |
Abamectin | 11.00 ± 0.52 d,E | 12.20 ± 0.66 d,D | 17.60 ± 0.58 d,C | 21.20 ± 0.32 d,B | 27.00 ± 0.72 d,A | 17.80 ± 0.56 d,C | 1.10 |
Treatments | Immature Development Time (Days) | Adult Longevity | Life Span | Life Cycle | ||||
---|---|---|---|---|---|---|---|---|
Egg | Larva | Protonymoh | Deutonymph | Total Immature | (Days) | (Days) | (Days) | |
Clove oil | 3.84 ± 0.06 ab | 3.45 ± 0.08 b | 3.63 ± 0.04 ab | 3.14 ± 0.05 ab | 14.06 ± 0.23 b | 16.82 ± 1.55 a | 30.88 ± 1.78 b | 20.66 ± 1.61 a,b |
Basil oil | 3.78 ± 0.05 b | 3.34 ± 0.07 b | 3.46 ± 0.07 b | 3.11 ± 0.05 b | 13.69± 0.24 c | 15.55 ± 1.64 b | 29.24 ± 1.88 c | 19.33 ± 1.69 b |
Peppermint oil | 3.78 ± 0.03 b | 3.30 ± 0.6 a | 3.12 ± 0.04 c | 3.02 ± 0.04 b | 13.22 ± 0.17 c | 15.78 ± 2.04 b | 29.00 ± 2.21 c | 19.56 ± 2.07 b |
Abamectin | 4.13 ± 0.07 a | 3.58 ± 0.09 a | 3.94 ± 0.08 a | 3.34 ± 0.09 a | 14.99 ± 0.33 a | 16.69 ± 2.31 a,b | 31.68 ± 2.64 a | 20.82 ± 2.38 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, S.E.; Salah, K.B.H.; Jghef, M.M.; Alkhaibari, A.M.; Shami, A.A.; Alghamdi, R.A.; El-Ashry, R.M.; Ali, A.A.I.; El-Maghraby, L.M.M.; Awad, A.E. Chemical Characterization of Clove, Basil and Peppermint Essential Oils; Evaluating Their Toxicity on the Development Stages of Two-Spotted Spider Mites Grown on Cucumber Leaves. Life 2022, 12, 1751. https://doi.org/10.3390/life12111751
Awad SE, Salah KBH, Jghef MM, Alkhaibari AM, Shami AA, Alghamdi RA, El-Ashry RM, Ali AAI, El-Maghraby LMM, Awad AE. Chemical Characterization of Clove, Basil and Peppermint Essential Oils; Evaluating Their Toxicity on the Development Stages of Two-Spotted Spider Mites Grown on Cucumber Leaves. Life. 2022; 12(11):1751. https://doi.org/10.3390/life12111751
Chicago/Turabian StyleAwad, Salonaz E., Karima Bel Hadj Salah, Muthana M. Jghef, Abeer Mousa Alkhaibari, Ashjan A. Shami, Rana Abdullah Alghamdi, Ramadan M. El-Ashry, Abdelhadi A. I. Ali, Lamiaa M. M. El-Maghraby, and Ahmed E. Awad. 2022. "Chemical Characterization of Clove, Basil and Peppermint Essential Oils; Evaluating Their Toxicity on the Development Stages of Two-Spotted Spider Mites Grown on Cucumber Leaves" Life 12, no. 11: 1751. https://doi.org/10.3390/life12111751
APA StyleAwad, S. E., Salah, K. B. H., Jghef, M. M., Alkhaibari, A. M., Shami, A. A., Alghamdi, R. A., El-Ashry, R. M., Ali, A. A. I., El-Maghraby, L. M. M., & Awad, A. E. (2022). Chemical Characterization of Clove, Basil and Peppermint Essential Oils; Evaluating Their Toxicity on the Development Stages of Two-Spotted Spider Mites Grown on Cucumber Leaves. Life, 12(11), 1751. https://doi.org/10.3390/life12111751