Effects of Carbonated Beverage Consumption on Oral pH and Bacterial Proliferation in Adolescents: A Randomized Crossover Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Intervention
2.3. Outcomes
2.3.1. Salivary pH
2.3.2. Dental Biofilm pH
2.3.3. Bacterial Growth of Dental Biofilm
3. Statistical Analysis
4. Results
4.1. Flow Diagram
4.2. Participants’ General Characteristics
4.3. Kinetics of Salivary pH
4.4. Kinetics of Dental Biofilm pH
4.5. Bacterial Proliferation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, C.Y.; Liu, Y.C.G.; Shieh, T.Y.; Tseng, Y.C.; Teng, A.Y.T. Higher Levels of Early Childhood Caries (ECC) Is Associated with Developing Psychomotor Deficiency: The Cross- Sectional Bi-Township Analysis for The New Hypothesis. Int. J. Environ. Res. Public Health 2019, 16, 3082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of Dental Caries and Dental Caries Management. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Modesto, A.; Marazita, M.L. Caries: Review of human genetics research. Caries Res. 2014, 48, 491–506. [Google Scholar] [CrossRef] [Green Version]
- González-Aragón Pineda, A.E.; García Pérez, A.; García-Godoy, F. Salivary parameters and oral health status amongst adolescents in Mexico. BMC Oral Health 2020, 20, 190. [Google Scholar] [CrossRef] [PubMed]
- Krzyściak, W.; Pluskwa, K.K.; Piątkowski, J.; Krzyściak, P.; Jurczak, A.; Kościelniak, D.; Skalniak, A. The usefulness of biotyping in the determination of selected pathogenicity determinants in Streptococcus mutans. BMC Microbiol. 2014, 14, 194. [Google Scholar] [CrossRef] [Green Version]
- Mathur, M.R.; Tsakos, G.; Millett, C. Socioeconomic inequalities in dental caries and their determinants in adolescents in New Delhi, India. BMJ Open. 2014, 4, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.; Falsetta, M.L.; Klein, M.I. The Exopolysaccharide Matrix: A Virulence Determinant of Cariogenic Biofilm. J. Dent. Res. 2013, 92, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Carvalho Silva, C.; Gavinha, S.; Vilela, S.; Rodrigues, R.; Manso, M.C.; Severo, M.; Lopes, C.; Melo, P. Dietary Patterns and Oral Health Behaviours Associated with Caries Development from 4 to 7 Years of Age. Life 2021, 11, 609. [Google Scholar] [CrossRef]
- West, N.X.; Joiner, A. Enamel mineral loss. J. Dent. 2014, 42 (Suppl. S1), S2–S11. [Google Scholar] [CrossRef]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Bechir, F.; Pacurar, M.; Tohati, A.; Bataga, S.M. Comparative Study of Salivary pH, Buffer Capacity, and Flow in Patients with and without Gastroesophageal Reflux Disease. Int. J. Environ. Res. Public Health 2021, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Han, Q.; Zhou, X.; Chen, Y.; Huang, X.; Guo, X.; Peng, R.; Wang, H.; Peng, X.; Cheng, L. Effect of pH-sensitive nanoparticles on inhibiting oral biofilms. Drug Deliv. 2022, 29, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Aiuchi, H.; Kitasako, Y.; Fukuda, Y.; Nakashima, S.; Burrow, M.F.; Tagami, J. Relationship between quantitative assessments of salivary buffering capacity and ion activity product for hydroxyapatite in relation to cariogenic potential. Aust. Dent. J. 2008, 53, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Ilie, O.; van Turnhout, A.G.; van Loosdrecht, M.C.; Picioreanu, C. Numerical modelling of tooth enamel subsurface lesion formation induced by dental plaque. Caries Res. 2014, 48, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Kwatra, K.S.; Kamboj, P. Evaluation of non-microbial salivary caries activity parameters and salivary biochemical indicators in predicting dental caries. J. Indian Soc. Pedod. Prev. Dent. 2012, 30, 212–217. [Google Scholar] [CrossRef]
- Ahmadi-Motamayel, F.; Falsafi, P.; Goodarzi, M.T.; Poorolajal, J. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers: Retrospective cohort study. Sultan. Qaboos Univ. Med. J. 2016, 16, 317–321. [Google Scholar] [CrossRef]
- Gornowicz, A.; Tokajuk, G.; Bielawska, A.; Maciorkowska, E.; Jabłoński, R.; Wójcicka, A.; Bielawski, K. The assessment of sIgA, histatin-5, and lactoperoxidase levels in saliva of adolescents with dental caries. Med. Sci. Monit. 2014, 20, 1095–1100. [Google Scholar]
- Acquier, A.B.; Pita, A.K.D.C.; Busch, L.; Sánchez, G.A. Comparison of salivary levels of mucin and amylase and their relation with clinical parameters obtained from patients with aggressive and chronic periodontal disease. J. Appl. Oral Sci. 2015, 23, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Bielawski, K.; Gabryel-Porowska, H.; Gornowicz, A.; Bielawska, A.; Wójcicka, A.; Maciorkowska, E.; Grabowska, S.Z. Mucin levels in saliva of adolescents with dental caries. Med. Sci. Moni. 2014, 20, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Hideaki, W.; Tatsuya, H.; Shogo, M.; Naruto, Y.; Hideaki, T.; Yoichi, M.; Yoshihiro, O.; Kazuo, U.; Hidenori, T. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system. Acupunct. Med. 2015, 33, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, P.J.; Kelly, S.A.M. Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. J. Dent. Res. 2014, 93, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.; Murray, B.; Price, T.; Atherton, D.; Hooks, T. Non-Nutritive (Artificial) Sweetener Knowledge among University Students. Nutrients 2019, 11, 2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruyère, O.; Ahmed, S.H.; Atlan, C.; Belegaud, J.; Bortolotti, M.; Canivenc-Lavier, M.-C.; Charrière, S.; Girardet, J.-P.; Houdart, S.; Kalonji, E.; et al. Review of the nutritional benefits and risks related to intense sweeteners. Arch. Public Health 2015, 73, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, E.; Cagetti, M.G.; Ionescu, A.; Campus, G.; Lingström, P. An in vitro and in vivo comparison of the effect of Stevia rebaudiana extracts on different caries-related variables: A randomized controlled trial pilot study. Caries Res. 2014, 48, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Jawale, B.A.; Bendgude, V.; Mahuli, A.V.; Dave, B.; Kulkarni, H.; Mittal, S. Dental Plaque pH Variation with Regular Soft Drink, Diet Soft Drink and High Energy Drink: An in vivo Study. J. Contemp. Dent. Pract. 2012, 13, 201–204. [Google Scholar]
- Moradi, G.; Mohamadi Bolbanabad, A.; Moinafshar, A.; Adabi, H.; Sharafi, M.; Zareie, B. Evaluation of Oral Health Status Based on the Decayed, Missing and Filled Teeth (DMFT) Index. Iran J. Public Health 2019, 48, 2050–2057. [Google Scholar] [CrossRef]
- Sánchez, G.A.; Fernandez De Preliasco, M.V. Salivary pH changes during soft drinks consumption in children. Int. J. Paediatr. Dent. 2003, 13, 251–257. [Google Scholar] [CrossRef]
- Uma, E.; Sze Theng, K.; Huan Yi, L.L.; Hong Yun, L.; Varghese, E.; Htoo Htoo Kyaw, S. Comparison of Salivary pH Changes after Consumption of Two Sweetened Malaysian Local Drinks among Individuals with Low Caries Experience: A Pilot Study. Malays. J. Med. Sci. 2018, 25, 100–111. [Google Scholar] [CrossRef]
- Roos, E.H.; Donly, K.J. In vivo dental plaque pH variation with regular and diet soft drinks. Pediatr. Dent. 2002, 24, 350–353. [Google Scholar]
- Llena Puy, C. Saliva and Oral Health The rôle of saliva in maintaining oral health and as an aid to diagnosis. Med. Oral Patol. Oral Cir. Bucal. 2006, 11, 449–455. [Google Scholar]
- Saeed, S.; Al-Tinawi, M. Evaluation of acidity and total sugar content of children′s popular beverages and their effect on plaque pH. J. Indian Soc. Pedod. Prev. Dent. 2010, 28, 189. [Google Scholar] [CrossRef] [PubMed]
- Giacaman, R.A.; Pailahual, V.; Díaz-Garrido, N. Cariogenicity induced by commercial carbonated beverages in an experimental biofilm-caries model. Eur. J. Dent. 2018, 12, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Giacaman, R.A.; Campos, P.; Muñoz-Sandoval, C.; Castro, R.J. Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Arch. Oral Biol. 2013, 58, 1116–1122. [Google Scholar] [CrossRef]
- Hasheminejad, N.; Malek Mohammadi, T.; Mahmoodi, M.R.; Barkam, M.; Shahravan, A. The association between beverage consumption pattern and dental problems in Iranian adolescents: A cross sectional study. BMC Oral Health 2020, 20, 74. [Google Scholar] [CrossRef]
- Marshall, T.A.; Curtis, A.M.; Cavanaugh, J.E.; Warren, J.J.; Levy, S.M. Beverage Intakes and Toothbrushing During Childhood Are Associated with Caries at Age 17 Years. J. Acad. Nutr. Diet. 2021, 121, 53–60. [Google Scholar] [CrossRef]
- Pita-Fernández, S.; Pombo-Sánchez, A.; Suárez-Quintanilla, J.; Novio-Mallón, S.; Rivas-Mundiña, B.; Pértega-Díaz, S. Relevancia clínica del cepillado dental y su relación con la caries. Aten. Primaria 2010, 42, 372–379. [Google Scholar] [CrossRef]
Characteristics | n | % |
---|---|---|
Female | 13 | (72.2) |
Consumption of 1–2 soft drinks per day n (%) | 18 | (100.0) |
Tooth brushing 2 times a day n (%) | 16 | (88.9) |
median | IQR | |
Age (years) | 17.0 | (17.0–17.0) |
DMFT | 3.5 | (2.0–4.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barajas-Torres, G.C.; Klünder-Klünder, M.; Garduño-Espinosa, J.; Parra-Ortega, I.; Franco-Hernández, M.I.; Miranda-Lora, A.L. Effects of Carbonated Beverage Consumption on Oral pH and Bacterial Proliferation in Adolescents: A Randomized Crossover Clinical Trial. Life 2022, 12, 1776. https://doi.org/10.3390/life12111776
Barajas-Torres GC, Klünder-Klünder M, Garduño-Espinosa J, Parra-Ortega I, Franco-Hernández MI, Miranda-Lora AL. Effects of Carbonated Beverage Consumption on Oral pH and Bacterial Proliferation in Adolescents: A Randomized Crossover Clinical Trial. Life. 2022; 12(11):1776. https://doi.org/10.3390/life12111776
Chicago/Turabian StyleBarajas-Torres, Guadalupe Carolina, Miguel Klünder-Klünder, Juan Garduño-Espinosa, Israel Parra-Ortega, María Isabel Franco-Hernández, and América Liliana Miranda-Lora. 2022. "Effects of Carbonated Beverage Consumption on Oral pH and Bacterial Proliferation in Adolescents: A Randomized Crossover Clinical Trial" Life 12, no. 11: 1776. https://doi.org/10.3390/life12111776
APA StyleBarajas-Torres, G. C., Klünder-Klünder, M., Garduño-Espinosa, J., Parra-Ortega, I., Franco-Hernández, M. I., & Miranda-Lora, A. L. (2022). Effects of Carbonated Beverage Consumption on Oral pH and Bacterial Proliferation in Adolescents: A Randomized Crossover Clinical Trial. Life, 12(11), 1776. https://doi.org/10.3390/life12111776