Coexistence of Moderate-to-Severe Obstructive Sleep Apnea and Inflammation Accelerates the Risk of Progression of Arterial Stiffness: A Prospective 6-Year Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Overnight Polysomnography
2.3. Demographic Profiles of Subjects
2.4. Measurement of Arterial Stiffness and Definition of Hypertension and Diabetes Mellitus
2.5. Statistical Analyses
3. Results
3.1. Study Population
3.2. The Estimated Risk of Elevated baPWV Based on the Existence of OSA and High hsCRP in Participants at Baseline
3.3. The Estimated Risk of Elevated ΔbaPWV in Relation to the Concurrent Existence of OSA and High hsCRP in Participants at 6-Year Follow-Up
3.4. The Estimated Risk of Elevated baPWV Based on the Coexistence of MSOSA and High hsCRP
3.5. Alteration in baPWV in Terms of the Presence of MSOSA and High hsCRP over 6-Years Examined by the Mixed-Effects Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pack, A.I.; Gislason, T. Obstructive sleep apnea and cardiovascular disease: A perspective and future directions. Prog. Cardiovasc. Dis. 2009, 51, 434–451. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A.; Lindberg, E. Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. J. Thorac. Dis. 2015, 7, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Mohsenin, V. Obstructive sleep apnea and hypertension: A critical review. Curr. Hypertens. Rep. 2014, 16, 482. [Google Scholar] [CrossRef] [PubMed]
- Lavie, L.; Lavie, P. Molecular mechanisms of cardiovascular disease in OSAHS: The oxidative stress link. Eur. Respir. J. 2009, 33, 1467–1484. [Google Scholar] [CrossRef]
- Kim, J.; Hakim, F.; Kheirandish-Gozal, L.; Gozal, D. Inflammatory pathways in children with insufficient or disordered sleep. Respir. Physiol. Neurobiol. 2011, 178, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.S.; Wong, M.; McBain, R.; Bailey, S.; Waters, K.A. Inflammatory measures in children with obstructive sleep apnoea. J. Paediatr. Child Health 2006, 42, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Kaditis, A.G.; Alexopoulos, E.I.; Kalampouka, E.; Kostadima, E.; Germenis, A.; Zintzaras, E.; Gourgoulianis, K. Morning levels of C-reactive protein in children with obstructive sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 2005, 171, 282–286. [Google Scholar] [CrossRef]
- Taheri, S.; Austin, D.; Lin, L.; Nieto, F.J.; Young, T.; Mignot, E. Correlates of serum C-reactive protein (CRP)—No association with sleep duration or sleep disordered breathing. Sleep 2007, 30, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Terentes-Printzios, D.; Ioakeimidis, N.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: A systematic review and meta-analysis. Hypertension 2012, 60, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Mattace-Raso, F.U.; van der Cammen, T.J.; Hofman, A.; van Popele, N.M.; Bos, M.L.; Schalekamp, M.A.; Asmar, R.; Reneman, R.S.; Hoeks, A.P.; Breteler, M.M.; et al. Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation 2006, 113, 657–663. [Google Scholar] [CrossRef]
- Ohkuma, T.; Ninomiya, T.; Tomiyama, H.; Kario, K.; Hoshide, S.; Kita, Y.; Inoguchi, T.; Maeda, Y.; Kohara, K.; Tabara, Y.; et al. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension 2017, 69, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, G.; Qi, J.; Chen, X.; Zhao, J.; Lin, Q. Effect of continuous positive airway pressure on arterial stiffness in patients with obstructive sleep apnea and hypertension: A meta-analysis. Eur. Arch. Otorhinolaryngol. 2016, 273, 4081–4088. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.L.; Butlin, M.; Wong, K.K.; Avolio, A.P. Is obstructive sleep apnoea causally related to arterial stiffness? A critical review of the experimental evidence. Sleep Med. Rev. 2013, 17, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Doonan, R.J.; Scheffler, P.; Lalli, M.; Kimoff, R.J.; Petridou, E.T.; Daskalopoulos, M.E.; Daskalopoulou, S.S. Increased arterial stiffness in obstructive sleep apnea: A systematic review. Hypertens. Res. 2011, 34, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, S.K.; Yoon, D.W.; Shin, C. Obstructive sleep apnoea is associated with progression of arterial stiffness independent of obesity in participants without hypertension: A KoGES Prospective Cohort Study. Sci. Rep. 2018, 8, 8152. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; In, K.; Kim, J.; You, S.; Kang, K.; Shim, J.; Lee, S.; Lee, J.; Lee, S.; Park, C.; et al. Prevalence of sleep-disordered breathing in middle-aged Korean men and women. Am. J. Respir. Crit. Care Med. 2004, 170, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S.J.; Choi, K.M.; Lee, S.K.; Yoon, D.W.; Lee, S.G.; Shin, C. Obstructive Sleep Apnea Is Associated with Elevated High Sensitivity C-Reactive Protein Levels Independent of Obesity: Korean Genome and Epidemiology Study. PLoS ONE 2016, 11, e0163017. [Google Scholar] [CrossRef] [Green Version]
- Shin, C.; Kim, J.; Kim, J.; Lee, S.; Shim, J.; In, K.; Kang, K.; Yoo, S.; Cho, N.; Kimm, K.; et al. Association of habitual snoring with glucose and insulin metabolism in nonobese Korean adult men. Am. J. Respir. Crit. Care Med. 2005, 171, 287–291. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, D.W.; Lee, S.K.; Lee, S.; Choi, K.M.; Robert, T.J.; Shin, C. Concurrent presence of inflammation and obstructive sleep apnea exacerbates the risk of metabolic syndrome: A KoGES 6-year follow-up study. Medicine 2017, 96, e4488. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G.; Ko, G.E.S.g. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, 1350. [Google Scholar] [CrossRef]
- Schulz, H. Phasic or transient? Comment on the terminology of the AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. 2007, 3, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, M.H.; Carley, D.W.; Carskadon, M.A.; Easton, P.; Guilleminault, C.; Harper, R.; Hayes, B.; Hirshkowitz, M.; Ktonas, P.; Keenan, S.; et al. EEG arousals: Scoring rules and examples: A preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 1992, 15, 173–184. [Google Scholar]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryo, M.; Maeda, K.; Onda, T.; Katashima, M.; Okumiya, A.; Nishida, M.; Yamaguchi, T.; Funahashi, T.; Matsuzawa, Y.; Nakamura, T.; et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabetes Care 2005, 28, 451–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Fujiyoshi, A.; Willcox, B.; Choo, J.; Vishnu, A.; Hisamatsu, T.; Ahuja, V.; Takashima, N.; Barinas-Mitchell, E.; Kadota, A.; et al. Increased Aortic Calcification Is Associated With Arterial Stiffness Progression in Multiethnic Middle-Aged Men. Hypertension 2017, 69, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.S.; Oni, E.T.; Warraich, H.J.; Blaha, M.J.; Blumenthal, R.S.; Karim, A.; Shaharyar, S.; Jamal, O.; Fialkow, J.; Cury, R.; et al. Systematic review on noninvasive assessment of subclinical cardiovascular disease in obstructive sleep apnea: New kid on the block! Sleep Med. Rev. 2014, 18, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Fatureto-Borges, F.; Jenner, R.; Costa-Hong, V.; Lopes, H.F.; Teixeira, S.H.; Marum, E.; Giorgi, D.A.M.; Consolim-Colombo, F.M.; Bortolotto, L.A.; Lorenzi-Filho, G.; et al. Does Obstructive Sleep Apnea Influence Blood Pressure and Arterial Stiffness in Response to Antihypertensive Treatment? Hypertension 2018, 72, 399–407. [Google Scholar] [CrossRef]
- Unnikrishnan, D.; Jun, J.; Polotsky, V. Inflammation in sleep apnea: An update. Rev. Endocr. Metab. Disord. 2015, 16, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Reichmuth, K.J.; Austin, D.; Skatrud, J.B.; Young, T. Association of sleep apnea and type II diabetes: A population-based study. Am. J. Respir. Crit. Care Med. 2005, 172, 1590–1595. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Khera, R.; Corrales-Medina, V.F.; Townsend, R.R.; Chirinos, J.A. Inflammation and arterial stiffness in humans. Atherosclerosis 2014, 237, 381–390. [Google Scholar] [CrossRef]
- Devaraj, S.; Singh, U.; Jialal, I. Human C-reactive protein and the metabolic syndrome. Curr. Opin. Lipidol. 2009, 20, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Can, M.; Acikgoz, S.; Mungan, G.; Bayraktaroglu, T.; Kocak, E.; Guven, B.; Demirtas, S. Serum cardiovascular risk factors in obstructive sleep apnea. Chest 2006, 129, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kageyama, N.; Nomura, M.; Nakaya, Y.; Watanabe, T.; Ito, S. Relationship between adhesion molecules with hs-CRP and changes therein after ARB (Valsartan) administration in patients with obstructive sleep apnea syndrome. J. Med. Investig. JMI 2006, 53, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Yokoe, T.; Minoguchi, K.; Matsuo, H.; Oda, N.; Minoguchi, H.; Yoshino, G.; Hirano, T.; Adachi, M. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 2003, 107, 1129–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aurora, R.N.; Punjabi, N.M. Obstructive sleep apnoea and type 2 diabetes mellitus: A bidirectional association. Lancet. Respir. Med. 2013, 1, 329–338. [Google Scholar] [CrossRef]
- Kheirandish-Gozal, L.; Capdevila, O.S.; Tauman, R.; Gozal, D. Plasma C-reactive protein in nonobese children with obstructive sleep apnea before and after adenotonsillectomy. J. Clin. Sleep Med. 2006, 2, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Goldbart, A.D.; Levitas, A.; Greenberg-Dotan, S.; Ben Shimol, S.; Broides, A.; Puterman, M.; Tal, A. B-type natriuretic peptide and cardiovascular function in young children with obstructive sleep apnea. Chest 2010, 138, 528–535. [Google Scholar] [CrossRef]
- Barcelo, A.; Barbe, F.; Llompart, E.; Mayoralas, L.R.; Ladaria, A.; Bosch, M.; Agusti, A.G. Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am. J. Med. 2004, 117, 118–121. [Google Scholar] [CrossRef]
- Guilleminault, C.; Kirisoglu, C.; Ohayon, M.M. C-reactive protein and sleep-disordered breathing. Sleep 2004, 27, 1507–1511. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Kim, J.; Kheirandish-Gozal, L.; Gozal, D. Obesity and obstructive sleep apnea syndrome in children: A tale of inflammatory cascades. Pediatric Pulmonol. 2011, 46, 313–323. [Google Scholar] [CrossRef]
- Kim, J.; Bhattacharjee, R.; Khalyfa, A.; Kheirandish-Gozal, L.; Capdevila, O.S.; Wang, Y.; Gozal, D. DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2012, 185, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Sutton-Tyrrell, K.; Najjar, S.S.; Boudreau, R.M.; Venkitachalam, L.; Kupelian, V.; Simonsick, E.M.; Havlik, R.; Lakatta, E.G.; Spurgeon, H.; Kritchevsky, S.; et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005, 111, 3384–3390. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Inoguchi, T.; Etoh, E.; Kodama, Y.; Sasaki, S.; Sonoda, N.; Nawata, H.; Shimabukuro, M.; Takayanagi, R. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: The Kyushu Prevention Study of Atherosclerosis. Diabetes Care 2014, 37, 2383–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [Green Version]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef] [Green Version]
- Pannier, B.M.; Avolio, A.P.; Hoeks, A.; Mancia, G.; Takazawa, K. Methods and devices for measuring arterial compliance in humans. Am. J. Hypertens. 2002, 15, 743–753. [Google Scholar] [CrossRef]
- Korcarz, C.E.; Gepner, A.D.; Peppard, P.E.; Young, T.B.; Stein, J.H. The effects of sleep-disordered breathing on arterial stiffness are modulated by age. Sleep 2010, 33, 1081–1085. [Google Scholar] [CrossRef] [Green Version]
- Kohler, M.; Craig, S.; Nicoll, D.; Leeson, P.; Davies, R.J.; Stradling, J.R. Endothelial function and arterial stiffness in minimally symptomatic obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2008, 178, 984–988. [Google Scholar] [CrossRef]
- Torres, G.; Sanchez-de-la-Torre, M.; Barbe, F. Relationship Between OSA and Hypertension. Chest 2015, 148, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Seetho, I.W.; Parker, R.J.; Craig, S.; Duffy, N.; Hardy, K.J.; Wilding, J.P.H. Obstructive sleep apnea is associated with increased arterial stiffness in severe obesity. J. Sleep Res. 2014, 23, 700–708. [Google Scholar] [CrossRef]
- White, L.H.; Bradley, T.D.; Logan, A.G. Pathogenesis of obstructive sleep apnoea in hypertensive patients: Role of fluid retention and nocturnal rostral fluid shift. J. Hum. Hypertens. 2015, 29, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Friedman, O.; Bradley, T.D.; Chan, C.T.; Parkes, R.; Logan, A.G. Relationship between overnight rostral fluid shift and obstructive sleep apnea in drug-resistant hypertension. Hypertension 2010, 56, 1077–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahin, Y.; Khan, J.A.; Chetter, I. Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: A meta-analysis and meta-regression of randomised controlled trials. Atherosclerosis 2012, 221, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Marcus, J.A.; Pothineni, A.; Marcus, C.Z.; Bisognano, J.D. The role of obesity and obstructive sleep apnea in the pathogenesis and treatment of resistant hypertension. Curr. Hypertens. Rep. 2014, 16, 411. [Google Scholar] [CrossRef]
- Lavie, L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia—Revisited—The bad ugly and good: Implications to the heart and brain. Sleep Med. Rev. 2015, 20, 27–45. [Google Scholar] [CrossRef]
- Tanaka, H.; Munakata, M.; Kawano, Y.; Ohishi, M.; Shoji, T.; Sugawara, J.; Tomiyama, H.; Yamashina, A.; Yasuda, H.; Sawayama, T.; et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J. Hypertens. 2009, 27, 2022–2027. [Google Scholar] [CrossRef] [Green Version]
- Gozal, D. Sleep, sleep disorders and inflammation in children. Sleep Med. 2009, 10 (Suppl. S1), S12–S16. [Google Scholar] [CrossRef]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of exercise modalities on arterial stiffness and wave reflection: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e110034. [Google Scholar] [CrossRef] [Green Version]
- Maki-Petaja, K.M.; Elkhawad, M.; Cheriyan, J.; Joshi, F.R.; Ostor, A.J.; Hall, F.C.; Rudd, J.H.; Wilkinson, I.B. Anti-tumor necrosis factor-alpha therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation 2012, 126, 2473–2480. [Google Scholar] [CrossRef] [Green Version]
- Angel, K.; Provan, S.A.; Fagerhol, M.K.; Mowinckel, P.; Kvien, T.K.; Atar, D. Effect of 1-year anti-TNF-alpha therapy on aortic stiffness, carotid atherosclerosis, and calprotectin in inflammatory arthropathies: A controlled study. Am. J. Hypertens. 2012, 25, 644–650. [Google Scholar] [CrossRef]
Non-OSA | OSA | p-Value | |||
---|---|---|---|---|---|
HsCRP (−) | HsCRP (+) | HsCRP (−) | HsCRP (+) | ||
Sample size, n (%) | 824 (42.4) | 240 (12.3) | 631 (32.4) | 250 (12.9) | - |
Age (years) | 52.6 ± 6.3 | 53.9 ± 7.0 & | 55.9 ± 7.4 | 56.1 ± 7.5 ‡ | <0.01 |
Male, n (%) | 371 (45.0) | 107 (44.6) | 388 (61.5) | 148 (59.2) | <0.01 |
BMI (kg/m2) | 23.6 ± 2.5 | 24.6 ± 2.7 & | 24.9 ± 2.7 † | 26.2 ± 3.1 ‡,§ | <0.01 |
ΔBMI (kg/m2) * | −0.01 ± 1.1 | −0.09 ± 1.1 | 0.01 ± 1.2 | −0.14 ± 1.3 | 0.31 |
WHR (cm/cm) | 0.84 ± 0.06 | 0.86 ± 0.06 & | 0.87 ± 0.06 † | 0.89 ± 0.05 ‡,§ | <0.01 |
ΔWHR (cm) * | 0.039 ± 0.04 | 0.038 ± 0.04 | 0.038 ± 0.04 | 0.032 ± 0.03 | 0.054 |
FM/Body weight (kg/kg) | 0.25 ± 0.6 | 0.28 ± 0.06 & | 0.26 ± 0.06 | 0.28 ± 0.07 ‡,§ | <0.01 |
ΔFM/Body weight (kg/kg) * | 0.02 ± 0.03 | 0.01 ± 0.03 | 0.02 ± 0.03 | 0.01 ± 0.03 | 0.053 |
ESS | 5.9 ± 4.3 | 5.6 ± 4.3 | 5.8 ± 4.4 | 5.8 ± 3.8 | 0.75 |
Hypertension, n (%) | 155 (18.8) | 59 (24.6) | 204 (32.3) | 98 (39.2) | <0.01 |
Diabetes mellitus, n (%) | 49 (5.9) | 27 (11.3) | 73 (11.6) | 41 (16.4) | <0.01 |
Systolic BP at baseline (mmHg) | 109.0 ± 14.1 | 110.9 ± 13.8 | 113.4 ± 14.1 † | 113.9 ± 13.9 ‡,§ | <0.01 |
Diastolic BP at baseline (mmHg) | 73.5 ± 9.8 | 74.8 ± 9.4 | 76.1 ± 9.6 † | 76.4 ± 9.9 ‡,§ | <0.01 |
Systolic BP at follow-up (mmHg) * | 113.2 ± 13.8 | 114.9 ± 13.0 | 116.6 ± 12.9 † | 119.2 ± 15.0 ‡,§ | <0.01 |
Diastolic BP at follow-up (mmHg) * | 73.4 ± 9.2 | 74.5 ± 8.7 | 74.8 ± 9.5 † | 75.9 ± 9.9 ‡,§ | <0.01 |
AHI (events/hour) | 1.9 ± 1.4 | 1.9 ± 1.4 | 12.9 ± 9.1 † | 15.2 ± 11.8 ‡,§ | <0.01 |
(Median, IQR) | (1.70, 0.7–3.1) | (1.8, 0.6–3.1) | (9.9, 6.7–15.6) | (11.2, 7.2–17.9) | |
SaO2 Nadir (%) | 89.8 ± 4.8 | 89.9 ± 4.4 | 84.4 ± 4.5 † | 83.5 ± 5.8 ‡,§ | <0.01 |
(Median, IQR) | (91.0, 89.0–92.0) | (86.0, 83.0–88.0) | (86.0, 83.0–88.0) | (82.0, 79.0–85.0) | |
ODI (events/hour) | 1.7 ± 1.3 | 1.7 ± 1.4 | 11.6 ± 8.5 † | 14.3 ± 11.7 ‡,§ | <0.01 |
(Median, IQR) | (1.4, 0.6–2.8) | (1.4, 0.6–2.97) | (9.0, 6.0–14.2) | (10.1, 6.6–17.0) | |
HsCRP (mg/dL) at baseline (Log transformed) | 0.47 ± 0.2 (−0.41 ± 0.3) | 2.59 ± 1.5 & (0.35 ± 0.2) | 0.60 ± 0.3 † (−0.29 ± 0.2) | 3.00 ± 1.8 ‡,§ (0.41 ± 0.2) | <0.01 |
HsCRP at follow-up (mg/dL) * (Log transformed) | 0.88 ± 1.4 (−0.25 ± 0.3) | 1.89 ± 2.6 (0.04 ± 0.4) | 1.06 ± 1.6 † (−0.17 ± 0.3) | 1.85 ± 1.8 ‡,§ (0.11 ± 0.3) | <0.01 |
Odds Ratios for the Risk of Elevated baPWV (95% CI) 1) | ||||||
---|---|---|---|---|---|---|
OSA (−)/ HsCRP(−) | OSA (−)/ HsCRP(+) | OSA (+)/ HsCRP(−) | OSA (+)/ HsCRP(+) | p-Value † | ||
With HTN medication (n = 396) | Sample size, n (%) | 105 (26.5) | 44 (11.1) | 164 (41.4) | 83 (21.0) | - |
MAP (mmHg) | 88.8 ± 8.7 | 90.1 ± 8.6 | 91.5 ± 9.3 | 91.5 ± 10.5 | >0.05 | |
BaPWV (m/s) | 14.6 ± 2.5 | 14.6 ± 2.1 | 14.4 ± 2.0 | 15.0 ± 2.4 | >0.05 | |
Elevated baPWV n, (%) 1) | 42 (40.0) | 18 (40.9) | 60 (36.6) | 41 (49.4) | >0.05 | |
Unadjusted | Reference | 1.03 (0.50–2.12) | 0.86 (0.52–1.43) | 1.46 (0.81–2.61) | >0.05 | |
Adjusted Model 1 | Reference | 0.96 (0.43–2.14) | 0.61 (0.33–1.11) | 1.24 (0.61–2.52) | >0.05 | |
Adjusted Model 2 | Reference | 0.94 (0.41–2.12) | 0.56 (0.31–1.02) | 1.09 (0.55–2.17) | >0.05 | |
Adjusted Model 3 | Reference | 0.96 (0.42–2.18) | 0.58 (0.31–1.06) | 1.16 (0.57–2.33) | >0.05 | |
Without HTN Medication (n = 1549) | Sample size, n (%) | 719 (46.4) | 196 (12.7) | 467 (30.1) | 167 (10.8) | - |
MAP (mmHg) | 84.8 ± 10.8 | 86.1 ± 10.5 | 87.5 ± 10.5 | 87.7 ± 10.4 | <0.01 | |
BaPWV (m/s) | 13.1 ± 1.8 | 13.6 ± 2.1 | 13.8 ± 1.9 | 14.1 ± 1.9 | <0.01 | |
Elevated baPWV n, (%) 1) | 104 (14.5) | 46 (23.5) | 123 (26.3) | 54 (32.3) | <0.01 | |
Unadjusted | Reference | 1.81 (1.22–2.67) & | 2.11 (1.57–2.83) & | 2.82 (1.92–4.15) &,* | <0.01 | |
Adjusted Model 1 | Reference | 1.70 (1.06–2.67) & | 1.62 (1.14–2.31) & | 2.37 (1.48–3.79) &,* | <0.01 | |
Adjusted Model 2 | Reference | 1.53 (1.01–2.42) § | 1.43 (1.01–2.02) § | 1.92 (1.21–3.04) &,* | <0.01 | |
Adjusted Model 3 | Reference | 1.63 (1.03–2.59) § | 1.51 (1.06–2.14) § | 2.12 (1.33–3.37) &,* | <0.01 | |
All (n = 1945) | Sample size, n (%) | 824 (42.4) | 240 (12.7) | 631 (12.3) | 250 (12.9) | - |
MAP (mmHg) | 85.3 ± 10.7 | 86.8 ± 10.3 | 88.5 ± 10.3 | 88.9 ± 10.6 | <0.01 | |
BaPWV (m/s) | 13.3 ± 1.9 | 13.8 ± 2.1 | 14.0 ± 1.9 | 14.4 ± 2.2 | <0.01 | |
Elevated baPWV n, (%) 1) | 146 (17.7) | 64 (26.7) | 183 (29.0) | 95 (38.0) | <0.01 | |
Unadjusted | Reference | 1.89 (1.48–2.43) & | 1.68 (1.20–2.36) & | 2.84 (2.08–3.88) &,* | <0.01 | |
Adjusted Model 1 | Reference | 1.50 (1.01–2.23) § | 1.24 (0.92–1.68) | 2.05 (1.39–3.01) &,* | <0.01 | |
Adjusted Model 2 | Reference | 1.38 (0.93-2.05) | 1.11 (0.83–1.50) | 1.67 (1.15–2.43) &,* | <0.01 | |
Adjusted Model 3 | Reference | 1.46 (0.98–2.17) | 1.17 (0.87–1.57) | 1.84 (1.26–2.69) &,* | <0.01 |
Odds Ratios for the Risk of Elevated baPWV (95% CI) 1) | ||||||
---|---|---|---|---|---|---|
OSA (−)/ HsCRP(−) | OSA (−)/ HsCRP(+) | OSA (+)/ HsCRP(−) | OSA (+)/ HsCRP(+) | p-Value † | ||
With HTN medication (n = 313) | Sample size, n (%) | 85 (27.2) | 38 (12.1) | 128 (40.9) | 62 (19.8) | - |
BaPWV (m/s) | 15.6 ± 2.9 | 16.1 ± 2.9 | 15.9 ± 2.7 | 15.8 ± 3.0 | >0.05 | |
ΔBaPWV (m/s) | 1.19 ± 2.3 | 1.47 ± 2.5 | 1.46 ± 2.2 | 1.27 ± 1.9 | >0.05 | |
Elevated ΔbaPWV n, (%) 1) | 26 (30.6) | 13 (34.2) | 47 (36.7) | 19 (30.6) | >0.05 | |
Unadjusted | Reference | 1.18 (0.52–2.66) | 1.31 (0.73–2.36) | 1.00 (0.49–2.04) | >0.05 | |
Adjusted Model 1 | Reference | 1.07 (0.45–2.51) | 1.24 (0.65–2.37) | 0.92 (0.42–2.04) | >0.05 | |
Adjusted Model 2 | Reference | 1.02 (0.43–2.39) | 1.13 (0.60–2.12) | 0.84 (0.39–1.82) | >0.05 | |
Adjusted Model 3 | Reference | 1.06 (0.45–2.53) | 1.18 (0.62–2.24) | 0.86 (0.39–1.91) | >0.05 | |
Without HTN medication (n = 1348) | Sample size, n (%) | 630 (46.7) | 171 (12.7) | 404 (30.0) | 143 (10.6) | - |
BaPWV (m/s) † | 13.8 ± 2.0 | 14.5 ± 2.1 | 14.7 ± 2.4 | 15.1 ± 2.6 | <0.01 | |
ΔBaPWV (m/s) | 0.78 ± 1.4 | 0.97 ± 1.7 | 0.89 ± 1.8 | 1.06 ± 2.0 | >0.05 | |
Elevated ΔbaPWV n, (%) 1),† | 122 (19.4) | 50 (29.2) | 91 (22.5) | 48 (33.6) | <0.01 | |
Unadjusted | Reference | 1.72 (1.17–2.52) & | 1.21 (0.89–1.64) & | 2.10 (1.41–3.13) & | <0.01 | |
Adjusted Model 1 | Reference | 1.62 (1.08–2.41) & | 0.99 (0.71–1.38) | 1.68 (1.08–2.61) & | <0.01 | |
Adjusted Model 2 | Reference | 1.59 (1.07–2.37) § | 1.00 (0.72–1.39) | 1.66 (1.08–2.56) & | <0.01 | |
Adjusted Model 3 | Reference | 1.57 (1.05–2.36) § | 0.98 (0.70–1.36) | 1.67 (1.08–2.57) & | <0.01 | |
All (n = 1661) | Sample size, n (%) | 715 (43.0) | 209 (12.6) | 532 (32.0) | 205 (12.4) | - |
BaPWV (m/s) † | 14.0 ± 2.2 | 14.8 ± 2.3 | 15.0 ± 2.5 | 15.3 ± 2.7 | <0.01 | |
ΔBaPWV (m/s) | 0.82 ± 1.6 | 1.06 ± 1.8 | 1.02 ± 1.9 | 1.13 ± 2.0 | 0.068 | |
Elevated ΔbaPWV n, (%) 1),† | 148 (20.7) | 63 (30.1) | 138 (25.9) | 67 (32.7) | <0.01 | |
Unadjusted | Reference | 1.65 (1.16–2.33) & | 1.34 (1.02–1.74) § | 1.86 (1.31–2.62) &,** | <0.01 | |
Adjusted Model 1 | Reference | 1.46 (1.02–2.13) & | 1.07 (0.80–1.44) | 1.51 (1.05–2.15) &,** | <0.05 | |
Adjusted Model 2 | Reference | 1.43 (0.98–2.08) | 1.08 (0.82–1.44) | 1.48 (1.03–2.12) §,** | <0.05 | |
Adjusted Model 3 | Reference | 1.43 (0.98–2.08) | 1.07 (0.80–1.43) | 1.47 (1.02–2.12) §,** | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Yoon, D.W.; Myoung, S.; Lee, S.K.; Shin, C. Coexistence of Moderate-to-Severe Obstructive Sleep Apnea and Inflammation Accelerates the Risk of Progression of Arterial Stiffness: A Prospective 6-Year Study. Life 2022, 12, 1823. https://doi.org/10.3390/life12111823
Kim J, Yoon DW, Myoung S, Lee SK, Shin C. Coexistence of Moderate-to-Severe Obstructive Sleep Apnea and Inflammation Accelerates the Risk of Progression of Arterial Stiffness: A Prospective 6-Year Study. Life. 2022; 12(11):1823. https://doi.org/10.3390/life12111823
Chicago/Turabian StyleKim, Jinkwan, Dae Wui Yoon, Sungmin Myoung, Seung Ku Lee, and Chol Shin. 2022. "Coexistence of Moderate-to-Severe Obstructive Sleep Apnea and Inflammation Accelerates the Risk of Progression of Arterial Stiffness: A Prospective 6-Year Study" Life 12, no. 11: 1823. https://doi.org/10.3390/life12111823
APA StyleKim, J., Yoon, D. W., Myoung, S., Lee, S. K., & Shin, C. (2022). Coexistence of Moderate-to-Severe Obstructive Sleep Apnea and Inflammation Accelerates the Risk of Progression of Arterial Stiffness: A Prospective 6-Year Study. Life, 12(11), 1823. https://doi.org/10.3390/life12111823