Specificity of Individual Response Radial Increment of Scots Pine in the Voronezh Biosphere Reserve on the Differentiated Forest Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitas, A. Dendroclimatological research of Scots pine (Pinus sylvestris L.) in the Baltic coastal zone of Lithuania. Balt. Forest. 2004, 6, 65–71. [Google Scholar]
- Liu, Y.; Cai, Q.; Shi, J.; Hughes, M.K.; E Kutzbach, J.; Liu, Z.; Ni, F.; An, Z. Seasonal precipitation in the south–central Helan Mountain region, China, reconstructed from tree–ring width for the past 224 years. Can. J. Forest Res. 2005, 9, 2403–2412. [Google Scholar] [CrossRef]
- Merlin, M.; Perot, T.; Perret, S.; Korboulewsky, N.; Vallet, P. Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For. Ecol. Manag. 2015, 339, 22–33. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, G.A.; Nigh, G.; Wang, T.; Ott, P.K. Growth response functions improved by accounting for nonclimatic site effects. Can. J. Forest Res. 2007, 37, 2724. [Google Scholar] [CrossRef]
- Solomina, O.; Matskovsky, V.; Dolgova, E.; Kuznetsova, V.; Semenyak, N.; Bebchuk, T.; Mikhalenko, V.; Karpukhin, A.; Khasanov, B. Tree-ring data set for dendroclimatic reconstructions and dendrochronological dating in European Russia. Sci. Data 2022, 367. [Google Scholar] [CrossRef] [PubMed]
- Caminero, L.; Génova, M.; Camarero, J.J.; Sánchez-Salguero, R. Growth responses to climate and drought at the southernmost European limit of Mediterranean Pinus pinaster forests. Dendrochronologia 2018, 9, 20–29. [Google Scholar] [CrossRef]
- Loader, N.J.; Woodley, E. Exploring for senescence signals in native Scots pine (Pinus sylvestris L.) in the Scottish Highlands. For. Ecol. Manag. 2010, 260, 321–330. [Google Scholar] [CrossRef]
- Smith, F.W.; Long, J.N. Age-related decline in forest growth: An emergent property. For. Ecol. Manag. 2001, 144, 175–181. [Google Scholar] [CrossRef]
- Mäkinen, H.; Yue, C.; Kohnle, U. Site index changes of Scots pine, Norway spruce and larch stands in southern and central Finland. Agric. For. Meteorol. 2017, 237–238, 95–104. [Google Scholar] [CrossRef]
- Cherubini, P.; Gartner, B.L.; Tognetti, R.; Braker, O.U.; Schoch, W.; Innes, J.L. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. Camb. Philos. Soc. 2003, 78, 119–148. [Google Scholar] [CrossRef] [Green Version]
- Matveev, S.M.; Matveeva, S.V.; Shurygin, Y.N. Recurrence of severe droughts and long-term dynamics of radial growth of Scotch pine in the Usmansky and Khrenovsky forests of the Voronezh region. J. Sib. Fed. Univ. 2012, 15, 27–42. (In Russian). Available online: https://elib.sfu-kras.ru/handle/2311/3006 (accessed on 30 October 2022).
- Matskovsky, V.; Dolgova, E.; Lomakin, N.; Matveev, S. Dendroclimatology and historical climatology of Voronezh region, European Russia, since 1790s. Int. J. Climatol. 2017, 9, 3057–3066. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Zhirnova, D.F.; Belokopytova, L.V.; Tychkov, I.I.; Vaganov, E.A.; Krutovsky, K.V. Response of Four Tree Species to Changing Climate in a Moisture-Limited Area of South Siberia. Forests 2019, 999. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K. Height growth patterns of Scots pine and Norway spruce in the coastal areas of western Finland. For. Ecol. Manag. 2000, 135, 205–216. [Google Scholar] [CrossRef]
- Yang, B.; Sonechkin, D.M.; Datsenko, N.M.; Ivashchenko, N.N.; Liu, J.; Qin, C. Eigen analysis of tree-ring records: Part 1, a limited representativeness of regional curve. Theor. Appl. Climtol. 2011, 106, 489–497. [Google Scholar] [CrossRef]
- Matveev, S.M. Dendroindication of the Dynamics of the State of Plantations in the Central Forest-Steppe; Monograph; State Forest Engineering Academy, Voronezh State University: Voronezh, Russia, 2003; (In Russian). Available online: https://www.elibrary.ru/item.asp?id=19489123 (accessed on 30 October 2022).
- Glyzin, A.V.; Razmakhnina, T.B.; Korsunov, V.M. Dendrochronological studies in the forest-steppe contact zone as a source of information on its dynamics. Sib. Ecol. J. 2005, 4, 79–83. (In Russian) [Google Scholar]
- Peters, R.L.; Groenendijk, P.; Vlam, M.; Zuidema, P.A. Detecting long-term growth trends using tree rings: A critical evaluation of methods. Glob. Chang. Biol. 2015, 21, 2040–2054. [Google Scholar] [CrossRef]
- Keyimua, M.; Li, Z.; Shi, B.F.G.L.S. Recent decline of high altitude coniferous growth due to thermo-hydraulic constrains: Evidence from the Miyaluo Forest Reserve, Western Sichuan Plateau of China. Dendrochronologia 2020, 63, 125751. [Google Scholar] [CrossRef]
- Bossard, C.C.; Cao, Y.; Wang, J.; Rose, A.; Tang, Y. New patterns of establishment and growth of Picea, Abies and Betula tree species in subalpine forest gaps of Jiuzhaigou National Nature Reserve, Sichuan, southwestern China in a changing environment. For. Ecol. Manag. 2015, 356, 84–92. [Google Scholar] [CrossRef]
- Oheimb, G.; Lang, A.C.; Bruelheide, H.; Forrester, D.I.; Wäsche, I.; Yu, M.; Härdtle, W. Individual-tree radial growth in a subtropical broad-leaved forest: The role of local neighbourhood competition. For. Ecol. Manag. 2011, 261, 499–507. [Google Scholar] [CrossRef]
- Agafonov, L.I.; Gurskaya, M.A.; Kukarskih, V.V.; Bubnov, M.O.; Devi, N.M.; Galimova, A.A. Insular Pine Forests of the Southern Urals and Ribbon Pine Forests of the Altai as Objects of Dendroclimatic Research. Russ. J. Ecol. 2021, 8, 349–357. [Google Scholar] [CrossRef]
- Iskandirov, P.Y.; Tishin, D.V.; Chizhikova, N.A. Dendroclimatic potential of Scotch pine of the Volga Upland of the Ulyanovsk Region. Proc. Samara Sci. Cent. Russ. Acad. Sci. 2019, 4, 127–130. (In Russian) [Google Scholar]
- Matveev, S.M.; Timashchuk, D.A. Dendroclimatic Assessment of a 200-Year-Old Scots Pine Stand in the Voronezh Biosphere Reserve. Contemp. Probl. Ecol. 2019, 12, 682–691. [Google Scholar] [CrossRef]
- Arzac, A.; Babushkina, E.A.; Fonti, P.; Slobodchikova, V.; Sviderskaya, I.V.; Vaganov, E.A. Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. Dendrochronologia 2018, 49, 1–8. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Belokopytova, L.V. Climatic signal in radial increment of conifers in forest-steppe of Southern Siberia and its dependence on local growing conditions. Russ. J. Ecol. 2014, 7, 325–332. [Google Scholar] [CrossRef]
- Epishkov, A.A.; Lipatkin, V.A.; Frolova, V.A.; Sidorenkov, V.M.; Stonozhenko, L.V.; Vorobieva, N.S.; Rumyantsev, D.E. Radial growth dynamics in Scots pine forests of the Yalutorovsky forest district of Tyumen region. Ecol. Environ. Conserv. 2022, 28, 1252–1261. [Google Scholar] [CrossRef]
- Matveev, S.M.; Chendev, Y.G.; Lupo, A.R.; Hubbart, J.A.; Timashchuk, D.A. Climatic Changes in the East-European Forest-Steppe and Effects on Scots Pine Productivity. Pure Appl. Geophys. 2017, 16, 427–443. [Google Scholar] [CrossRef]
- Volodkin, A.A.; Larionov, M.V.; Sharunov, O.A. Changes in the Structure of Forest Communities in Penza Region under the Influence of Natural Factors. IOP Conf. Ser. Earth Environ. Sci. 2021, 808, 012064. [Google Scholar] [CrossRef]
- Larionov, M.V.; Larionov, N.V.; Volodkin, A.A.; Dogadina, M.A. Research and assessment of the state of plants in artificial plant communities (on the example of the Volga and Chernozem Regions). Nat. Tech. Sci. 2021, 1, 17–20. (In Russian) [Google Scholar] [CrossRef]
- Vanhellemont, M.; Verheyen, K.; Staelens, J.; Hermy, M. Factors affecting radial growth of the invasive Prunus Serotina in pine plantations in Flanders. Eur. J. For. Res. 2010, 129, 367–375. [Google Scholar] [CrossRef]
- Shiyatov, S.G.; Vaganov, E.A.; Kirdyanov, A.V.; Kruglov, V.B.; Mazepa, V.S.; Naurzbaev, M.M.; Khantemirov, R.M. Methods Dendrochronology; KrasGU: Krasnoyarsk, Russia, 2000; (In Russian). Available online: https://www.booksite.ru/fulltext/rusles/shiy/text.pdf (accessed on 30 October 2022).
- Mérian, P.; Pierrat, J.-C.; Lebourgeois, F. Effect of sampling effort on the regional chronology statistics and climate–growth relationships estimation. Dendrochronologia 2013, 31, 58–67. [Google Scholar] [CrossRef]
- Pedersona, N.; Cookb, E.R.; Jacobyb, G.C.; Peteetc, D.M.; Griffina, K.L. The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 2004, 22, 7–29. [Google Scholar] [CrossRef]
- Rinn, F. TSAP. In Reference Manual. Computer Program for Time Series Analysis and Presentation, version 3.0; TSAP: Heidelberg, Germany, 1996; p. 262. [Google Scholar]
- Sanitary Safety Rules in Forests: Decree of the Government of the Russian Federation of December 9, 2020 N 2047 ”On approval of the Rules for sanitary safety in forests”. 2020. (In Russian). Available online: https://base.garant.ru/75037636 (accessed on 30 October 2022).
- Copenheaver, A.; Pokorski, A.; Currie, E.; Abrams, D. Causation of false ring formation in Pinus baksiana: A comparison of age, canopy class, climate and growth rate. For. Ecol. Manag. 2006, 7, 348–355. [Google Scholar] [CrossRef]
- Ng’andwe, P.; Chungu, D.; Tailoka, F.; Bwembya, M. Assessing cross-datable distinct annual growth rings in non-native Pinus kesiya Royle ex Gordon in Zambia. Dendrochronologia 2021, 18, 107–125. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Hong, Y.; Zeng, X.; Liu, X. Changes in the radial growth of Picea crassifolia and its driving factors in the mid-western Qilian Mountains Northwest China. Dendrochronologia 2020, 12, 125–137. [Google Scholar] [CrossRef]
- Housset, J.M.; Toth, E.G.; Girardin, M.P.; Tremblay, F.; Motta, R.; Bergeron, Y. Tree-rings, genetics and the environment: Complex interactions at the rear edge of species distribution range. Dendrochronologia 2021, 13, 12–25. [Google Scholar] [CrossRef]
- Vitas, A. Centennial Scots pine chronologies for western, central and eastern Lithuania. Dendrochronologia 2022, 74, 125977. [Google Scholar] [CrossRef]
- Rumyantsev, D.E. Dendroclimatic diagnostics of pine and spruce growth in the Kivach Reserve (Russian Karelia). Ecol. Environ. Conserv. 2021, 27, 322–329. Available online: http://www.envirobiotechjournals.com/EEC/v27FebSupplIssue2021/EEC-53.pdf (accessed on 30 October 2022).
- Rygalova, N.V. Construction of Centuries-Old Tree-Ring Chronologies of Pinus sylvestris L. for the Forest-Steppe and Steppe Zones of the South of Western Siberia. J. Sib. Fed. Univ. Biol. 2022, 15, 202–220. (In Russian) [Google Scholar] [CrossRef]
- Matveev, S.M.; Mironenko, A.V.; Timashchuk, D.A. Forestry and dendroclimate analysis of artificial Pine phytocoenosis subject to recreational digression in the suburban zone of Voronezh. J. Sib. Fed. Univ. Ser. Biol. 2015, 4, 410–425. (In Russian) [Google Scholar] [CrossRef]
Object of Study | Composition of Tree Species, % | dbh (cm) | h (m) | f | Standing Volume, m3/ha | Age, Years * | Ksr | FGC ** |
---|---|---|---|---|---|---|---|---|
Data of forest managementfor 2013 | 100% Scots pine | 44 | 28 | 0.70 | 320 | 125 | – | B2 |
Core sampling area | 100% Scots pine + European birch | 47 | 29 | 0.59 | 347 | 100–140 | 2.1 | B2–B3 |
Average characteristic of tree stand of research plot | 100% Scots pine + European birch, English oak, Maple | 45 | 29 | 0.69 | 340 | 130 | 2.3 | B2 |
Core Number | GLK, % | GSL (*) | CC, % | CDI, % |
---|---|---|---|---|
Total Annual Ring Width | ||||
1 | 74 | 3 | 93 | 67 |
10 | 71 | 3 | 92 | 60 |
18 | 76 | 3 | 53 | 65 |
23 | 71 | 3 | 63 | 50 |
24 | 56 | – | 57 | 18 |
25 | 76 | 3 | 28 | 69 |
26 | 79 | 3 | 80 | 71 |
Average values: | 72 | 3 | 67 | 57 |
Early wood (EW) | ||||
1 | 73 | 3 | 90 | 67 |
4 | 75 | 3 | 89 | 66 |
8 | 78 | 3 | 85 | 84 |
10 | 73 | 3 | 91 | 62 |
18 | 70 | 3 | 55 | 42 |
23 | 67 | 3 | 60 | 42 |
24 | 56 | – | 57 | 7 |
25 | 70 | 3 | 31 | 47 |
Average values: | 71 | 3 | 70 | 52 |
Late wood (LW) | ||||
1 | 72 | 3 | 87 | 45 |
2 | 72 | 3 | 21 | 64 |
3 | 74 | 3 | 34 | 58 |
5 | 79 | 3 | 71 | 63 |
9 | 75 | 3 | 85 | 34 |
10 | 66 | 3 | 83 | 41 |
13 | 71 | 3 | 77 | 44 |
18 | 77 | 3 | 38 | 51 |
20 | 67 | 3 | 78 | 43 |
24 | 59 | 1 | 46 | 14 |
25 | 77 | 3 | 28 | 54 |
26 | 73 | 3 | 77 | 51 |
Average values: | 72 | 3 | 60 | 47 |
Wood Type | The Largest Values of the Variation Coefficient | The Smallest Values of the Variation Coefficient | ||
---|---|---|---|---|
Years | Values | Years | Values | |
Total annual ring | 2012 | 80.64 | 1949 | 29.32 |
Total annual ring | 1973 | 79.72 | 1946 | 31.57 |
Early wood | 1924 | 86.3 | 1956 | 29.0 |
Early wood | 1973 | 81.3 | 1957 | 30.4 |
Late wood | 1973 | 96.8 | 1953 | 32.5 |
Late wood | 1975 | 96.1 | 1948 | 34.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveev, S.; Litovchenko, D.; Gusev, A.; Golovin, Y. Specificity of Individual Response Radial Increment of Scots Pine in the Voronezh Biosphere Reserve on the Differentiated Forest Conditions. Life 2022, 12, 1863. https://doi.org/10.3390/life12111863
Matveev S, Litovchenko D, Gusev A, Golovin Y. Specificity of Individual Response Radial Increment of Scots Pine in the Voronezh Biosphere Reserve on the Differentiated Forest Conditions. Life. 2022; 12(11):1863. https://doi.org/10.3390/life12111863
Chicago/Turabian StyleMatveev, Sergey, Daria Litovchenko, Alexander Gusev, and Yuriy Golovin. 2022. "Specificity of Individual Response Radial Increment of Scots Pine in the Voronezh Biosphere Reserve on the Differentiated Forest Conditions" Life 12, no. 11: 1863. https://doi.org/10.3390/life12111863
APA StyleMatveev, S., Litovchenko, D., Gusev, A., & Golovin, Y. (2022). Specificity of Individual Response Radial Increment of Scots Pine in the Voronezh Biosphere Reserve on the Differentiated Forest Conditions. Life, 12(11), 1863. https://doi.org/10.3390/life12111863