Structure and Phylogeny of Chloroplast and Mitochondrial Genomes of a Chlorophycean Algae Pectinodesmus pectinatus (Scenedesmaceae, Sphaeropleales)
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Sequencing and Genome Assembly
2.2. Genome Annotation and Codon Usage
2.3. Repeat Structure and Sequence Analysis
2.4. Comparative Genomic Analysis
3. Results
3.1. Chloroplast and Mitochondrial Genomes Assembly
3.2. Gene Annotation and Codon Usage
3.3. AT-Skew and GC-Skew
3.4. SSR Identification
3.5. Phylogenetic Analyses
3.6. CCT Map
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soos, V.; Shetty, P.; Maroti, G.; Incze, N.; Badics, E.; Balint, P.; Ordog, V.; Balazs, E. Biomolecule composition and draft genome of a novel, high-lipid producing Scenedesmaceae microalga. Algal Res. Biomass Biofuels Bioprod. 2021, 54, 102181. [Google Scholar] [CrossRef]
- Minoda, A.; Weber, A.P.M.; Tanaka, K.; Miyagishima, S. Nucleus-Independent Control of the Rubisco Operon by the Plastid-Encoded Transcription Factor Ycf30 in the Red Alga Cyanidioschyzon merolae. Plant Physiol. 2010, 154, 1532–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, J.A. Implications of mutation of organelle genomes for organelle function and evolution. J. Exp. Bot. 2015, 66, 5639–5650. [Google Scholar] [CrossRef] [Green Version]
- Dejtisakdi, W.; Miller, S.M. Overexpression of Calvin cycle enzyme fructose 1,6-bisphosphatase in Chlamydomonas reinhardtii has a detrimental effect on growth. Algal Res. Biomass Biofuels Bioprod. 2016, 14, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Craig, R.J. Does mitochondrial DNA replication in Chlamydomonas require a reverse transcriptase? New Phytol. 2021, 229, 1192–1195. [Google Scholar] [CrossRef]
- Smith, D.R. Evolution: In Chloroplast Genomes, Anything Goes. Curr. Biol. 2017, 27, 1305–1307. [Google Scholar] [CrossRef] [Green Version]
- Ris, H.; Plaut, W. Ultrastructure of DNA-Containing Areas in Chloroplast of Chlamydomonas. J. Cell Biol. 1962, 13, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Rochaix, J.D.; Malnoe, P. Anatomy of Chloroplast Ribosomal DNA of Chlamydomonas Reinhardii. Cell 1978, 15, 661–670. [Google Scholar] [CrossRef]
- Rochaix, J.D.; Malnoe, P. Gene Localization on Chloroplast DNA of Chlamydomonas. Experientia 1978, 34, 953. [Google Scholar]
- Fang, J.; Chen, Y.L.; Liu, G.X.; Verbruggen, H.; Zhu, H. Chloroplast Genome Traits Correlate with Organismal Complexity and Ecological Traits in Chlorophyta. Front. Ecol. Evol. 2021, 9. [Google Scholar] [CrossRef]
- Tyra, H.M.; Linka, M.; Weber, A.P.; Bhattacharya, D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol. 2007, 8. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.; Kim, E. A Modern Descendant of Early Green Algal Phagotrophs. Curr. Biol. 2013, 23, 1081–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponce-Toledo, R.I.; Moreira, D.; Lopez-Garcia, P.; Deschamps, P. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry. Mol. Biol. Evol. 2018, 35, 2198–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Prieto, A.; Weber, A.P.M.; Bhattacharya, D. The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 2007, 41, 147–168. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, R.R.; Brumwell, S.L.; Soltysiak, M.P.M.; Hamadache, S.; Davis, J.G.; Wang, J.Y.; Tholl, S.Q.; Janakirama, P.; Edgell, D.R.; Karas, B.J.; et al. Rapid method for generating designer algal mitochondrial genomes. Algal Res. Biomass Biofuels Bioprod. 2020, 50, 102014. [Google Scholar]
- Noutahi, E.; Calderon, V.; Blanchette, M.; El-Mabrouk, N.; Lang, B.F. Rapid Genetic Code Evolution in Green Algal Mitochondrial Genomes. Mol. Biol. Evol. 2019, 36, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Ge, H.M.; Zhou, X.P.; Zhang, D.L.; Hu, C.X. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15. Bioresour. Technol. 2013, 144, 261–267. [Google Scholar] [CrossRef]
- Minyuk, G.; Chelebieva, E.; Chubchikova, I.; Dantsyuk, N.; Drobetskaya, I.; Sakhon, E.; Chekanov, K.; Solovchenko, A. Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae 2017, 32, 245–259. [Google Scholar] [CrossRef]
- Toyoshima, H.; Takaichi, S.; Kawasaki, S. Water-soluble astaxanthin-binding protein (AstaP) from Coelastrella astaxanthina Ki-4 (Scenedesmaceae) involving in photo-oxidative stress tolerance. Algal Res. Biomass Biofuels Bioprod. 2020, 50, 101988. [Google Scholar] [CrossRef]
- Saeki, K.; Aburai, N.; Aratani, S.; Miyashita, H.; Abe, K. Salt-stress and plant hormone-like responses for selective reactions of esterified xanthophylls in the aerial microalga Coelastrella sp KGU-Y002. J. Appl. Phycol. 2017, 29, 115–122. [Google Scholar] [CrossRef]
- Chiellini, C.; Serra, V.; Gammuto, L.; Ciurli, A.; Longo, V.; Gabriele, M. Evaluation of Nutraceutical Properties of Eleven Microalgal Strains Isolated from Different Freshwater Aquatic Environments: Perspectives for Their Application as Nutraceuticals. Foods 2022, 11, 654. [Google Scholar] [CrossRef] [PubMed]
- Grama, B.S.; Chader, S.; Khelifi, D.; Stenuit, B.; Jeffryes, C.; Agathos, S.N. Characterization of fatty acid and carotenoid production in an Acutoclesmus microalga isolated from the Algerian Sahara. Biomass Bioenergy 2014, 69, 265–275. [Google Scholar] [CrossRef]
- Wang, Z.K.; He, L.J.; Hu, F.; Lin, X.Z. Characterization of the complete mitochondrial genome of Coelastrum_sp.F187. Mitochondrial DNA Part B-Resour. 2017, 2, 455–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegewald, E.; Bock, C.; Krienitz, L. A phylogenetic study on Scenedesmaceae with the description of a new species of Pectinodesmus and the new genera Verrucodesmus and Chodatodesmus (Chlorophyta, Chlorophyceae). Fottea 2013, 13, 149–164. [Google Scholar] [CrossRef]
- da Silva e Souza, D.B.; Felisberto, S.A. Comasiella, Desmodesmus, Pectinodesmus and Scenedesmus of the periphytic community in ecossistem lentic tropical, Central Brazil. Hoehnea 2014, 41, 109–120. [Google Scholar] [CrossRef]
- Song, H.Y.; Zhang, Q.; Hu, Y.X.; Liu, G.X.; Hu, Z.Y. Cryptic biodiversity of coccoid green algae and progress in the phylogenic studies. Biodivers. Sci. 2015, 23, 383–397. [Google Scholar] [CrossRef]
- Mladenov, R.; Belkinova, D. Variability of Scenedesmus acuminatus (LAGERH) CHOD and Scenedesmus pectinatus MEYEN in nutrient solutions with different NaCl concentrations. Arch. Protistenkd. 1997, 147, 393–399. [Google Scholar] [CrossRef]
- Dzhambazov, B.; Mladenov, R.; Teneva, I.; Belkinova, D. Karyotypic differences and evolutionary tendencies of some species from the subgenus Obliquodesmus Mlad. of genus Scenedesmus Meyen (Chlorophyta, Chlorococcales). J. Genet. 2006, 85, 39–44. [Google Scholar] [CrossRef]
- Lurling, M. Investigation of a rotifer (Brachionus calyciflorus)—green alga (Scenedesmus pectinatus) interaction under non- and nutrient-limited conditions. Ann. Limnol. Int. J. Limnol. 2006, 42, 9–17. [Google Scholar] [CrossRef]
- Krichen, E.; Rapaport, A.; Le Floc’h, E.; Fouilland, E. Demonstration of facilitation between microalgae to face environmental stress. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- de Cambiaire, J.C.; Otis, C.; Lemieux, C.; Turmel, M. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol. Biol. 2006, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Yamaguchi, H.; Nakajima, N.; Kawachi, M. Raphidocelis subcapitata (=Pseudokirchneriella subcapitata) provides an insight into genome evolution and environmental adaptations in the Sphaeropleales. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Nesamma, A.A.; Lali, A.M.; Jutur, P.P.; Prakash, G. The chloroplast genome of a resilient chlorophycean microalga Asterarcys sp. Algal Res. Biomass Biofuels Bioprod. 2020, 49, 101952. [Google Scholar] [CrossRef]
- Smith, D.R.; Keeling, P.J. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc. Natl. Acad. Sci. USA 2015, 112, 10177–10184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar]
- Wyman, S.K.; Jansen, R.K.; Boore, J.L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Shi, L.C.; Zhu, Y.J.; Chen, H.M.; Zhang, J.H.; Lin, X.H.; Guan, X.J. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom. 2012, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.P.; Lowe, T.M. GtRNAdb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016, 44, D184–D189. [Google Scholar] [CrossRef] [Green Version]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef] [PubMed]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [Green Version]
- Sharp, P.M.; Li, W.H. The Codon Adaptation Index—A Measure of Directional Synonymous Codon Usage Bias, and Its Potential Applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B.; Gao, S.H.; Lercher, M.J.; Hu, S.N.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef]
- Nedelcu, A.M.; Lee, R.W.; Lemieux, C.; Gray, M.W.; Burger, G. The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res. 2000, 10, 819–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turmel, M.; Otis, C.; Lemieux, C. The mitochondrial genome of Chara vulgaris: Insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 2003, 15, 1888–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turmel, M.; Otis, C.; Lemieux, C. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus. BMC Genom. 2007, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fields, F.J.; Ostrand, J.T.; Tran, M.; Mayfield, S.P. Nuclear genome shuffling significantly increases production of chloroplast-based recombinant protein in Chlamydomonas reinhardtii. Algal Res. Biomass Biofuels Bioprod. 2019, 41, 101523. [Google Scholar] [CrossRef]
- Smith, A.C.; Purton, S. The transcriptional apparatus of algal plastids. Eur. J. Phycol. 2002, 37, 301–311. [Google Scholar] [CrossRef]
- Hess, W.R.; Borner, T. Organellar RNA polymerases of higher plants. Int. Rev. Cytol. A Surv. Cell Biol. 1999, 190, 1–59. [Google Scholar]
- Batarseh, T.N.; Hug, S.M.; Batarseh, S.N.; Gaut, B.S. Genetic Mutations That Drive Evolutionary Rescue to Lethal Temperature in Escherichia coli. Genome Biol. Evol. 2020, 12, 2029–2044. [Google Scholar] [CrossRef]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Hegewald, E.; Wolf, M.; Keller, A.; Friedl, T.; Krienitz, L. ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference to Coelastrum (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus. Phycologia 2010, 49, 325–335. [Google Scholar] [CrossRef]
- Liu, F.; Melton, J.T. Chloroplast Genomes of the Green-Tide Forming Alga Ulva compressa: Comparative Chloroplast Genomics in the Genus Ulva (Ulvophyceae, Chlorophyta). Front. Mar. Sci. 2021, 8, 668542. [Google Scholar] [CrossRef]
- Ren, Q.M.; Wang, Y.C.; Lin, Y.N.; Zhen, Z.H.; Cui, Y.L.; Qin, S. The extremely large chloroplast genome of the green alga Haematococcus pluvialis: Genome structure, and comparative analysis. Algal Res. Biomass Biofuels Bioprod. 2021, 56, 102308. [Google Scholar] [CrossRef]
- Malnoe, A.; Wang, F.; Girard-Bascou, J.; Wollman, F.A.; de Vitry, C. Thylakoid FtsH Protease Contributes to Photosystem II and Cytochrome b(6)f Remodeling in Chlamydomonas reinhardtii under Stress Conditions. Plant Cell 2014, 26, 373–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.R.; Wang, B.; Shen, Z.; Wang, Z.X.; Wang, W.; Liu, H.Z.; Wang, C.; Xin, M.S. The chloroplast genome sequence of the green macroalga Caulerpa okamurae (Ulvophyceae, Chlorophyta): Its structural features, organization and phylogenetic analysis. Mar. Genom. 2020, 53, 100752. [Google Scholar] [CrossRef] [PubMed]
- Jalal, A.; Schwarz, C.; Schmitz-Linneweber, C.; Vallon, O.; Nickelsen, J.; Bohne, A.V. A Small Multifunctional Pentatricopeptide Repeat Protein in the Chloroplast of Chlamydomonas reinhardtii. Mol. Plant 2015, 8, 412–426. [Google Scholar] [CrossRef]
- Inoue-Kashino, N.; Kashino, Y.; Takahashi, Y. Psb30 is a photosystem II reaction center subunit and is required for optimal growth in high light in Chlamydomonas reinhardtii. J. Photochem. Photobiol. B Biol. 2011, 104, 220–228. [Google Scholar] [CrossRef] [PubMed]
A(U) (%) 1 | T (%) 2 | C (%) 3 | G (%) 4 | GC (%) 5 | Length (bp) 6 | ||
---|---|---|---|---|---|---|---|
LSC | 36.08 | 35.17 | 14.4 | 14.36 | 28.75 | 99,156 | |
IRA | 31.29 | 29.35 | 17.58 | 21.78 | 39.36 | 13,494 | |
SSC | 35.85 | 36.14 | 14.27 | 13.75 | 28.02 | 70,665 | |
IRB | 29.35 | 31.29 | 21.78 | 17.58 | 39.36 | 13,494 | |
Total | 35.21 | 34.85 | 15.08 | 14.87 | 34.00 | 196,809 | |
CDS | 33.84 | 34.67 | 15.83 | 15.66 | 31.49 | 91,917 | |
1st position | 40.89 | 36.99 | 10.94 | 11.18 | 22.12 | 30,638 | |
2nd position | 31.31 | 34.01 | 14.89 | 19.79 | 34.68 | 30,638 | |
3rd position | 29.31 | 33.01 | 21.67 | 16.01 | 37.68 | 30,638 |
Category of Genes | Group of Gene | Name of Gene |
---|---|---|
Self-replication | Small subunit of ribosome | rps2 rps3 rps4 rps7 rps8 rps9 rps11 rps12 rps14 rps18 rps19 |
Large subunit of ribosome | rpl2 rpl12 rpl14 rpl5 rpl16 rpl20 rpl23 rpl36 | |
DNA-dependent RNA polymerase | rpoA rpoBa rpoBb rpoC1 rpoC2 | |
Ribosomal RNA genes | rrn5S * rrn16S * rrn23S * | |
Transfer RNA genes | tRNA-Ala(GCA) * tRNA-Arg(CGT) tRNA-Arg(AGA) tRNA-Asn(AAC) tRNA-Asp(GAC) tRNA-Cys(TGC) tRNA-Gln(CAA) tRNA-Glu(GAA) * tRNA-Gly(GGA) tRNA-Gly(GGC) tRNA-His(CAC) tRNA-Ile(ATC) * tRNA-Leu(CTA) tRNA-Lys(AAA) tRNA-Met1(ATG) * tRNA-Met2(ATG) tRNA-Phe(TTC) tRNA-Pro(CCA) tRNA-Ser1(AGC) tRNA-Ser2(AGC) tRNA-Ser3(TCA) tRNA-Thr(ACA) tRNA-Trp(TGG) tRNA-Tyr(TAC) tRNA-Val(GTA) | |
Genes for photosynthesis | Photochlorophyllide reductase | chlB chlL chlN |
Large subunit of Rubisco | rbcL | |
Subunits of photosystem II | psbA psbB psbC psbD psbE psbF psbH psbI psbJ psbK psbL psbM psbN psbT psbZ ycf12 | |
Subunits of photosystem I | psaA psaB psaC1 psaC2 psaJ ycf3 ycf4 | |
Subunits of ATP synthase | atpA atpB atpE atpF atpH atpI | |
Subunits of cytochrome | petA petB petD petG petL | |
Other genes | Elongation factor Tu | tufA |
Envelope membrane protein | cemA | |
C-type cytochrome synthesis gene | ccsA | |
Cell division protein | ftsH | |
Protease | clpP | |
Translation initiation factor | infA | |
Component of TIC complex | ycf1 |
Category of Genes | Group of Gene | Name of Gene |
---|---|---|
Self-replication | Small subunit of ribosome | rns1 rns2 |
Large subunit of ribosome | rnl1 rnl2 rnl3 rnl4 | |
Transfer RNA genes | tRNA-Ala tRNA-Arg1 tRNA-Arg2 tRNA-Asn tRNA-Asp tRNA-Cys tRNA-Gln tRNA-Glu tRNA-Gly tRNA-His tRNA-Ile tRNA-Leu1 tRNA-Leu2 tRNA-Leu3 tRNA-Leu4 tRNA-Lys1 tRNA-Lys2 tRNA-Met1 tRNA-Met2 tRNA-Phe tRNA-Pro tRNA-Ser1 tRNA-Ser2 tRNA-Trp tRNA-Tyr1 tRNA-Tyr2 tRNA-Val | |
Other genes | cytochrome c oxidase | cox1 cox2 cox3 |
NADH dehydrogenase | nad1 nad2 nad3 nad4 nad5 nad6 nad4L | |
cytochrome b | cytb | |
Subunits of ATP synthase | atp6 atp9 |
Entire Genome | Protein-Coding Gene | tRNAs | |||||||
---|---|---|---|---|---|---|---|---|---|
Length | AT% | GC-Skew | AT-Skew | Length (aa) | AT% (all) | AT% (3rd) | Length (bp) | AT% (t) | |
Chloroplast | 196,809 | 70.06 | -0.69 | 0.51 | 30,558 | 68.51 | 62.32 | 2184 | 46.57 |
Mitochondrial | 32,195 | 59.22 | 0.0095 | 0.0036 | 4232 | 56.6 | 56.63 | 1810 | 51.55 |
Gene | Location | Exon I (bp) | Intron I (bp) | Exon II (bp) | Intron II (bp) | Exon III (bp) | Intron III (bp) | Exon IV (bp) | Intron IV (bp) | Exon V (bp) | Intron V (bp) | Exon VI (bp) | Intron VI (bp) | Exon VII (bp) | Intron VII (bp) | Exon VIIII (bp) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
psbC | LSC | 882 | 1497 | 74 | 1223 | 72 | 293 | 337 | ||||||||
psaA | LSC | 707 | 1742 | 628 | 1416 | 654 | ||||||||||
chlB | LSC | 799 | 48 | 800 | ||||||||||||
rbcL | LSC | 460 | 1921 | 240 | 1790 | 731 | ||||||||||
psbA | LSC | 174 | 305 | 105 | 1324 | 116 | 1520 | 28 | 1213 | 91 | 1304 | 47 | 1479 | 73 | 2821 | 431 |
cemA | SSC | 90 | 262 | 1158 | ||||||||||||
rps18 | SSC | 250 | 27 | 317 | ||||||||||||
rrn23S * | IRs | 2051 | 938 | 967 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Liu, C.; He, L.; Zeng, Z.; Zhang, A.; Li, H.; Hu, Z.; Lou, S. Structure and Phylogeny of Chloroplast and Mitochondrial Genomes of a Chlorophycean Algae Pectinodesmus pectinatus (Scenedesmaceae, Sphaeropleales). Life 2022, 12, 1912. https://doi.org/10.3390/life12111912
Zhao X, Liu C, He L, Zeng Z, Zhang A, Li H, Hu Z, Lou S. Structure and Phylogeny of Chloroplast and Mitochondrial Genomes of a Chlorophycean Algae Pectinodesmus pectinatus (Scenedesmaceae, Sphaeropleales). Life. 2022; 12(11):1912. https://doi.org/10.3390/life12111912
Chicago/Turabian StyleZhao, Xinmei, Chenglong Liu, Lijuan He, Zhiyong Zeng, Anda Zhang, Hui Li, Zhangli Hu, and Sulin Lou. 2022. "Structure and Phylogeny of Chloroplast and Mitochondrial Genomes of a Chlorophycean Algae Pectinodesmus pectinatus (Scenedesmaceae, Sphaeropleales)" Life 12, no. 11: 1912. https://doi.org/10.3390/life12111912
APA StyleZhao, X., Liu, C., He, L., Zeng, Z., Zhang, A., Li, H., Hu, Z., & Lou, S. (2022). Structure and Phylogeny of Chloroplast and Mitochondrial Genomes of a Chlorophycean Algae Pectinodesmus pectinatus (Scenedesmaceae, Sphaeropleales). Life, 12(11), 1912. https://doi.org/10.3390/life12111912