HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies
Abstract
:1. Introduction
1.1. Human Immunodeficiency Virus-1 (HIV-1)
1.2. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2)
Disease Caused by the Virus | HIV-1 | SARS-CoV-2 |
---|---|---|
AIDS | COVID-19 | |
Genome organization and translation mechanism | RNA genome with a cDNA intermediate followed by integration in the host genome [4] | ssRNA positive genome translated in protein immediately after the infection [2] |
Target cells | T cells, macrophages, astrocytes, microglia cells [17] | Respiratory tissues, kidneys, small intestines, pancreas, blood vessels [18] |
Target receptor/coreceptor | CD4/CCR5 and CXCR4 | ACE2/TMPRSS2 |
Viral persistence | Lifelong infection that can be managed with cART [5] | From 10 to 17 days [19] |
Suggested treatment | Combination of anti-retroviral drugs to avoid the adaptation of HIV-1 to the treatment [8] | Antipyretics, corticosteroids, immunomodulatory agents, mAbs, antivirals, based on the disease severity [20] |
2. Population Studies on HIV-1 and SARS-CoV-2 Co-Infections: A Global Overview
3. HIV-1 Therapy and SARS-CoV-2 Treatment
4. Novel Drugs to Resolve Co-Infections and Potentially to Guide the Development of Novel Anti-SARS-CoV-2 Therapies
4.1. In Silico and In Vitro Identification of Viral Target to Resolve Co-Infections and Potentially to Guide the Development of Novel Anti-SARS-CoV-2 Drugs
4.2. Attempts to Resolve Co-Infection by Enhancing a Humoral Response: The Identification of Possible Broadly Neutralizing Antibodies against HIV-1 and SARS-CoV-2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clin. Rheumatol. 2020, 39, 2085–2094. [Google Scholar] [CrossRef] [PubMed]
- Illanes-álvarez, F.; Márquez-Ruiz, D.; Márquez-Coello, M.; Cuesta-Sancho, S.; Girón-González, J.A. Similarities and Differences between HIV and SARS-CoV-2. Int. J. Med. Sci. 2021, 18, 846. [Google Scholar] [CrossRef] [PubMed]
- Attaway, A.H.; Scheraga, R.G.; Bhimraj, A.; Biehl, M.; Hatipoğ Lu, U. Severe COVID-19 Pneumonia: Pathogenesis and Clinical Management. BMJ 2021, 372, n436. [Google Scholar] [CrossRef] [PubMed]
- Wilen, C.B.; Tilton, J.C.; Doms, R.W. HIV: Cell Binding and Entry. Cold Spring Harb. Perspect. Med. 2012, 2, a006866. [Google Scholar] [CrossRef]
- Moir, S.; Chun, T.W.; Fauci, A.S. Pathogenic Mechanisms of HIV Disease. Annu. Rev. Pathol. 2011, 6, 223–248. [Google Scholar] [CrossRef]
- Orser, L.; O’Byrne, P.; Holmes, D. AIDS Cases in Ottawa: A Review of Simultaneous HIV and AIDS Diagnoses. Public Health Nurs. 2022, 39, 909–916. [Google Scholar] [CrossRef]
- Akanbi, M.O.; Scarci, K.; Taiwo, B.; Murphy, R.L. Combination Nucleoside/ Nucleotide Reverse Transcriptase Inhibitors. Expert Opin. Pharmacother. 2012, 13, 65. [Google Scholar] [CrossRef] [Green Version]
- Campbell, L.A.; Mocchetti, I. Extracellular Vesicles and HIV-Associated Neurocognitive Disorders: Implications in Neuropathogenesis and Disease Diagnosis. Neurotox. Res. 2021, 39, 2098–2107. [Google Scholar] [CrossRef]
- Thomas, J.; Ruggiero, A.; Paxton, W.A.; Pollakis, G. Measuring the Success of HIV-1 Cure Strategies. Front. Cell. Infect. Microbiol. 2020, 10, 134. [Google Scholar] [CrossRef]
- UNAIDS. Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 15 December 2021).
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. Addendum: A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 588, E6. [Google Scholar] [CrossRef]
- V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus Biology and Replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Biswas, B.; Chattopadhyay, S.; Hazra, S.; Hansda, A.K.; Goswami, R. COVID-19 Pandemic: The Delta Variant, T-Cell Responses, and the Efficacy of Developing Vaccines. Inflamm. Res. 2022, 71, 377. [Google Scholar] [CrossRef]
- Presti, A.L.; Coghe, F.; Di Martino, A.; Fais, S.; Cappai, R.; Marra, M.; Carollo, M.; Crescenzi, M.; Orrù, G.; Rezza, G.; et al. First Detection of SARS-CoV-2 Lineage A.27 in Sardinia, Italy. Ann. Ist. Super. Sanita 2022, 58, 1–5. [Google Scholar] [CrossRef]
- Nutini, A.; Zhang, J.; Sohail, A.; Arif, R.; Nofal, T.A. Forecasting of the Efficiency of Monoclonal Therapy in the Treatment of CoViD-19 Induced by the Omicron Variant of SARS-CoV2. Results Phys. 2022, 35, 105300. [Google Scholar] [CrossRef]
- Valcour, V.; Sithinamsuwan, P.; Letendre, S.; Ances, B. Pathogenesis of HIV in the Central Nervous System. Curr. HIV/AIDS Rep. 2011, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Y.; Liu, Q.; Yao, Q.; Wang, X.; Zhang, H.; Chen, R.; Ren, L.; Min, J.; Deng, F.; et al. SARS-CoV-2 Cell Tropism and Multiorgan Infection. Cell Discov. 2021, 7, 17. [Google Scholar] [CrossRef]
- Cao, C.; Cai, Z.; Xiao, X.; Rao, J.; Chen, J.; Hu, N.; Yang, M.; Xing, X.; Wang, Y.; Li, M.; et al. The Architecture of the SARS-CoV-2 RNA Genome inside Virion. Nat. Commun. 2021, 12, 3917. [Google Scholar] [CrossRef]
- ECDC-Treatment and Pharmaceutical Prophylaxis of COVID-19. Available online: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/treatment (accessed on 15 December 2021).
- Squillace, N.; Ricci, E.; Colella, E.; Bonfanti, P. HIV and SARS-CoV-2 Co-Infection: What Are the Risks? Infect. Drug Resist. 2021, 14, 3991. [Google Scholar] [CrossRef]
- Chilot, D.; Woldeamanuel, Y.; Manyazewal, T. COVID-19 Burden on HIV Patients Attending Antiretroviral Therapy in Addis Ababa, Ethiopia: A Multicenter Cross-Sectional Study. Front. Med. 2022, 9, 741862. [Google Scholar] [CrossRef]
- Lesko, C.R.; Bengtson, A.M. HIV and COVID-19: Intersecting Epidemics with Many Unknowns. Am. J. Epidemiol. 2021, 190, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Isernia, V.; Julia, Z.; Le Gac, S.; Bachelard, A.; Landman, R.; Lariven, S.; Joly, V.; Deconinck, L.; Rioux, C.; Lescure, X.; et al. SARS-COV2 Infection in 30 HIV-Infected Patients Followed-up in a French University Hospital. Int. J. Infect. Dis. 2020, 101, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Noe, S.; Schabaz, F.; Heldwein, S.; Mayer, W.; Ruecker, K.; Tiller, F.W.; von Krosigk, A.; Wiese, C.; Balogh, A.; Gersbacher, E.; et al. HIV and SARS-CoV-2 Co-Infection: Cross-Sectional Findings from a German ‘Hotspot’. Infection 2021, 49, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Härter, G.; Spinner, C.D.; Roider, J.; Bickel, M.; Krznaric, I.; Grunwald, S.; Schabaz, F.; Gillor, D.; Postel, N.; Mueller, M.C.; et al. COVID-19 in People Living with Human Immunodeficiency Virus: A Case Series of 33 Patients. Infection 2020, 48, 1. [Google Scholar] [CrossRef] [PubMed]
- Vizcarra, P.; Pérez-Elías, M.J.; Quereda, C.; Moreno, A.; Vivancos, M.J.; Dronda, F.; Casado, J.L.; Moreno, S.; Fortún, J.; Navas, E.; et al. Description of COVID-19 in HIV-Infected Individuals: A Single-Centre, Prospective Cohort. Lancet. HIV 2020, 7, e554. [Google Scholar] [CrossRef] [PubMed]
- Geretti, A.M.; Stockdale, A.J.; Kelly, S.H.; Cevik, M.; Collins, S.; Waters, L.; Villa, G.; Docherty, A.; Harrison, E.M.; Turtle, L.; et al. Outcomes of Coronavirus Disease 2019 (COVID-19) Related Hospitalization Among People With Human Immunodeficiency Virus (HIV) in the ISARIC World Health Organization (WHO) Clinical Characterization Protocol (UK): A Prospective Observational Study. Clin. Infect. Dis. An Off. Publ. Infect. Dis. Soc. Am. 2021, 73, e2095. [Google Scholar] [CrossRef]
- del Amo, J.; Polo, R.; Moreno, S.; Díaz, A.; Martínez, E.; Arribas, J.R.; Jarrín, I.; Hernán, M.A. Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy: A Cohort Study. Ann. Intern. Med. 2020, 173, 536–541. [Google Scholar] [CrossRef]
- Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and Other Drugs for the Treatment of the New Coronavirus. Curr. Med. Chem. 2020, 27, 4536–4541. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Ye, X.T.; Luo, Y.L.; Xia, S.C.; Sun, Q.F.; Ding, J.G.; Zhou, Y.; Chen, W.; Wang, X.F.; Zhang, W.W.; Du, W.J.; et al. Clinical Efficacy of Lopinavir/Ritonavir in the Treatment of Coronavirus Disease 2019. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3390–3396. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Vanetti, C.; Trabattoni, D.; Stracuzzi, M.; Amendola, A.; Fappani, C.; Rubinacci, V.; Fenizia, C.; Gianolio, L.; Biasin, M.; Dighera, A.; et al. Immunological Characterization of HIV and SARS-CoV-2 Coinfected Young Individuals. Cells 2021, 10, 3187. [Google Scholar] [CrossRef]
- Pujari, S.; Gaikwad, S.; Chitalikar, A.; Dabhade, D.; Joshi, K.; Bele, V. Long-Coronavirus Disease among People Living with HIV in Western India: An Observational Study. Immunity Inflamm. Dis. 2021, 9, 1037–1043. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Trunfio, M.; Sasset, L.; Leoni, D.; Castelli, E.; Menzo, S.L.; Gardin, S.; Putaggio, C.; Brundu, M.; Garzotto, P.; et al. Factors Associated with Severe COVID-19 and Post-Acute COVID-19 Syndrome in a Cohort of People Living with HIV on Antiretroviral Treatment and with Undetectable HIV RNA. Viruses 2022, 14, 493. [Google Scholar] [CrossRef]
- Lee, K.W.; Yap, S.F.; Ngeow, Y.F.; Lye, M.S. Covid-19 in People Living with Hiv: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3554. [Google Scholar] [CrossRef]
- Gatechompol, S.; Avihingsanon, A.; Putcharoen, O.; Ruxrungtham, K.; Kuritzkes, D.R. COVID-19 and HIV Infection Co-Pandemics and Their Impact: A Review of the Literature. AIDS Res. Ther. 2021, 18, 28. [Google Scholar] [CrossRef]
- Mahdi, M.; Mótyán, J.A.; Szojka, Z.I.; Golda, M.; Miczi, M.; Tőzsér, J. Analysis of the Efficacy of HIV Protease Inhibitors against SARS-CoV-2’s Main Protease. Virol. J. 2020, 17, 190. [Google Scholar] [CrossRef]
- Wang, R.R.; Yang, Q.H.; Luo, R.H.; Peng, Y.M.; Dai, S.X.; Zhang, X.J.; Chen, H.; Cui, X.Q.; Liu, Y.J.; Huang, J.F.; et al. Azvudine, a Novel Nucleoside Reverse Transcriptase Inhibitor Showed Good Drug Combination Features and Better Inhibition on Drug-Resistant Strains than Lamivudine in Vitro. PLoS ONE 2014, 9, e105617. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Li, Y.H.; Wang, L.L.; Liu, H.Q.; Lu, S.Y.; Liu, Y.; Li, K.; Liu, B.; Li, S.Y.; Shao, F.M.; et al. Azvudine Is a Thymus-Homing Anti-SARS-CoV-2 Drug Effective in Treating COVID-19 Patients. Signal Transduct. Target. Ther. 2021, 6, 414. [Google Scholar] [CrossRef]
- Lee, R.K.L.; Li, T.N.; Chang, S.Y.; Chao, T.L.; Kuo, C.H.; Pan, M.Y.C.; Chiou, Y.T.; Liao, K.J.; Yang, Y.; Wu, Y.H.; et al. Identification of Entry Inhibitors against Delta and Omicron Variants of SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 4050. [Google Scholar] [CrossRef] [PubMed]
- Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S.D.; Kousoulas, K.G. The Anti-HIV Drug Nelfinavir Mesylate (Viracept) Is a Potent Inhibitor of Cell Fusion Caused by the SARSCoV-2 Spike (S) Glycoprotein Warranting Further Evaluation as an Antiviral against COVID-19 Infections. J. Med. Virol. 2020, 92, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Buchrieser, J.; Dufloo, J.; Hubert, M.; Monel, B.; Planas, D.; Rajah, M.M.; Planchais, C.; Porrot, F.; Guivel-Benhassine, F.; Van der Werf, S.; et al. Syncytia Formation by SARS-CoV-2-Infected Cells. EMBO J. 2020, 39, e106267. [Google Scholar] [CrossRef]
- Citarella, A.; Scala, A.; Piperno, A.; Micale, N. SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021, 11, 607. [Google Scholar] [CrossRef]
- Mótyán, J.A.; Mahdi, M.; Hoffka, G.; Tőzsér, J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int. J. Mol. Sci. 2022, 23, 3507. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, K.Y.; Lou, L.; Edwards, L.G.; Doma, B.K.; Xie, Z.R. In Silico Identification of Drug Candidates against COVID-19. Inform. Med. Unlocked 2020, 21, 100461. [Google Scholar] [CrossRef]
- Harrison, S.C. Mechanism of Membrane Fusion by Viral Envelope Proteins. Adv. Virus Res. 2005, 64, 231–261. [Google Scholar] [CrossRef]
- Plemper, R.K. Cell Entry of Enveloped Viruses. Curr. Opin. Virol. 2011, 1, 92. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Ahmadi, K.; Farasat, A.; Rostamian, M.; Johari, B.; Madanchi, H. Enfuvirtide, an HIV-1 Fusion Inhibitor Peptide, Can Act as a Potent SARS-CoV-2 Fusion Inhibitor: An in Silico Drug Repurposing Study. J. Biomol. Struct. Dyn. 2022, 40, 5566–5576. [Google Scholar] [CrossRef] [PubMed]
- Astuti, I. Ysrafil Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An Overview of Viral Structure and Host Response. Diabetes Metab. Syndr. 2020, 14, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Vicenti, I.; Zazzi, M.; Saladini, F. SARS-CoV-2 RNA-Dependent RNA Polymerase as a Therapeutic Target for COVID-19. Expert Opin. Ther. Pat. 2021, 31, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Razali, R.; Asis, H.; Budiman, C. Structure-Function Characteristics of SARS-CoV-2 Proteases and Their Potential Inhibitors from Microbial Sources. Microorganisms 2021, 9, 2481. [Google Scholar] [CrossRef]
- Chukwudozie, O.S.; Duru, V.C.; Ndiribe, C.C.; Aborode, A.T.; Oyebanji, V.O.; Emikpe, B.O. The Relevance of Bioinformatics Applications in the Discovery of Vaccine Candidates and Potential Drugs for COVID-19 Treatment. Bioinform. Biol. Insights 2021, 15, 11779322211002168. [Google Scholar] [CrossRef]
- Zhang, X.W.; Yap, Y.L. Structural Similarity between HIV-1 Gp41 and SARS-CoV S2 Proteins Suggests an Analogous Membrane Fusion Mechanism. Theochem 2004, 677, 73–76. [Google Scholar] [CrossRef]
- Calligari, P.; Bobone, S.; Ricci, G.; Bocedi, A. Molecular Investigation of SARS-CoV-2 Proteins and Their Interactions with Antiviral Drugs. Viruses 2020, 12, 445. [Google Scholar] [CrossRef] [Green Version]
- Ancy, I.; Sivanandam, M.; Kumaradhas, P. Possibility of HIV-1 Protease Inhibitors-Clinical Trial Drugs as Repurposed Drugs for SARS-CoV-2 Main Protease: A Molecular Docking, Molecular Dynamics and Binding Free Energy Simulation Study. J. Biomol. Struct. Dyn. 2021, 39, 5368–5375. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Allemailem, K.S.; Almatroudi, A.; Moustafa, M.F.; Hegazy, M.E.F. In Silico Evaluation of Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors. Protein J. 2021, 40, 296–309. [Google Scholar] [CrossRef]
- Mathew, S.M.; Benslimane, F.; Althani, A.A.; Yassine, H.M. Identification of Potential Natural Inhibitors of the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein Using a Computational Docking Approach. Qatar Med. J. 2021, 2021, 12. [Google Scholar] [CrossRef]
- Mishra, N.; Kumar, S.; Singh, S.; Bansal, T.; Jain, N.; Saluja, S.; Kumar, R.; Bhattacharyya, S.; Palanichamy, J.K.; Mir, R.A.; et al. Cross-Neutralization of SARS-CoV-2 by HIV-1 Specific Broadly Neutralizing Antibodies and Polyclonal Plasma. PLoS Pathog. 2021, 17, e1009958. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.F.; Zhao, F.; Huang, D.; Beutler, N.; Burns, A.; He, W.T.; Limbo, O.; Smith, C.; Song, G.; Woehl, J.; et al. Isolation of Potent SARS-CoV-2 Neutralizing Antibodies and Protection from Disease in a Small Animal Model. Science 2020, 369, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Perween, R.; PraveenKumar, M.; Shrivastava, T.; Parray, H.A.; Singh, V.; Singh, S.; Chiranjivi, A.; Jakhar, K.; Sonar, S.; Tiwari, M.; et al. The SARS CoV-2 Spike Directed Non-Neutralizing Polyclonal Antibodies Cross-React with Human Immunodeficiency Virus (HIV-1) Gp41. Int. Immunopharmacol. 2021, 101, 108187. [Google Scholar] [CrossRef] [PubMed]
- Mannar, D.; Leopold, K.; Subramaniam, S. Glycan Reactive Anti-HIV-1 Antibodies Bind the SARS-CoV-2 Spike Protein but Do Not Block Viral Entry. Sci. Rep. 2021, 11, 12448. [Google Scholar] [CrossRef]
- Nomah, D.K.; Reyes-Urueña, J.; Llibre, J.M.; Ambrosioni, J.; Ganem, F.S.; Miró, J.M.; Casabona, J. HIV and SARS-CoV-2 Co-Infection: Epidemiological, Clinical Features, and Future Implications for Clinical Care and Public Health for People Living with HIV (PLWH) and HIV Most-at-Risk Groups. Curr. HIV/AIDS Rep. 2021, 18, 518–526. [Google Scholar] [CrossRef]
- Dadashi, M.; Dadashi, A.; Sameni, F.; Sayadi, S.; Goudarzi, M. Since January 2020 Elsevier Has Created a COVID-19 Resource Centre with Free Information in English and Mandarin on the Novel Coronavirus COVID-19. The COVID-19 Resource Centre Is Hosted on Elsevier Connect, the Company’s Public News and Information; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar]
First Author and Year | Country | Studied Cohorts | Results |
---|---|---|---|
Isernia et al., 2020 [24] | France | 30 HIV-1 and SARS-CoV-2 positive patients | HIV is not an independent risk factor for SARS-CoV-2. |
Noe et al., 2021 [25] | Germany | 500 PLWH | HIV-1 is not associated with elevated probability of SARS-CoV-2 infection |
Härter et al., 2020 [26] | Germany | 33 HIV-1 and SARS-CoV-2 positive patients | PLWH on cART regimen did not show increased risk of mortality and morbidities when experiencing symptomatic COVID-19 infection |
Vizcarra et al., 2020 [27] | Spain | 51 HIV-1 and SARS-CoV-2 positive patients | HIV-1 infection is not associated with protection and lower risk of severe SARS-CoV-2 infection |
Geretti et al., 2021 [28] | United Kingdom | 47,592 SARS-CoV-2 patients (0.26% PLWH) | There is an association between PLWH under 60 years old and an increased SARS-CoV-2 mortality compared with the HIV-1 uninfected group |
Vanetti et al., 2021 [35] | Italy | 85 PLWH among whom 4 had SARS-CoV-2 infection | HIV-1 is not associated with increased risk and severity of SARS-CoV-2 infection. Moreover, higher levels of IL-10 in HIV-1 and SARS-CoV-2 positive patients were observed, thus suggesting an IL-10 role in SARS-CoV-2 infection in PLWH |
Del Amo et al., 2020 [29] | Spain | 77,590 PLWH under cART regimen among whom 236 with SARS-CoV-2 infection | HIV-1 positive man older than 70 years old possess a higher risk for COVID-19 diagnosis. TDF/FTC cART regimen seems to be protective for COVID-19 and COVID-19-related hospitalization |
Cao et al., 2020 [31] | China | 199 SARS-CoV-2 patients to test efficacy of PIs | There is no improvement in SARS-CoV-2 infection in patients taking standard drug regimen supplemented with ritonavir/lopinavir compared with patients taking the standard drug regimen. Ritonavir/lopinavir treatment had no antiviral effect on SARS-CoV-2-infected patients |
Ye et al., 2020 [32] | China | 47 SARS-CoV-2 patients to test efficacy of PIs | The protease inhibitors ritonavir/lopinavir in combination with pneumonia adjuvant drugs have beneficial effects in the management of COVID-19 symptoms. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefani, C.; Fantoni, T.; Bissoli, M.; Thomas, J.; Ruggiero, A. HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies. Life 2022, 12, 2089. https://doi.org/10.3390/life12122089
Stefani C, Fantoni T, Bissoli M, Thomas J, Ruggiero A. HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies. Life. 2022; 12(12):2089. https://doi.org/10.3390/life12122089
Chicago/Turabian StyleStefani, Chiara, Tobia Fantoni, Michele Bissoli, Jordan Thomas, and Alessandra Ruggiero. 2022. "HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies" Life 12, no. 12: 2089. https://doi.org/10.3390/life12122089
APA StyleStefani, C., Fantoni, T., Bissoli, M., Thomas, J., & Ruggiero, A. (2022). HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies. Life, 12(12), 2089. https://doi.org/10.3390/life12122089