Were the First Trace Fossils Really Burrows or Could They Have Been Made by Sediment-Displacive Chemosymbiotic Organisms?
Abstract
:1. Introduction
2. Microbially Dominated Seafloors at the Dawn of Animal Life
3. The Slow Death of the Ediacaran-Type Matground Biotope
4. The Early Putative Burrowers of the Ediacaran–Cambrian Transition
5. What are the Graphoglyptida if not the Rangeomorpha Persevering?
5.1. The Early Vermiform/Line Graphoglyptids
5.2. The Tree-Like Graphoglyptids of the E-C Boundary
5.3. The Net-Like Graphoglyptida
6. Conclusions or “What if….?”
Funding
Acknowledgments
Conflicts of Interest
References
- Crimes, T.P.; Anderson, M.M. Trace fossils from late Precambrian-early Cambrian strata of southeastern Newfoundland (Canada). Temporal and environmental implications. J. Paleontol. 1985, 59, 310–343. [Google Scholar]
- McIlroy, D.; Logan, G.A. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios 1999, 14, 58–72. [Google Scholar] [CrossRef]
- McIlroy, D.; Brasier, M.D. Ichnological evidence for the Cambrian explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern Norway. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier; Brasier, A.T., McIlroy, D., McLoughlin, N., Eds.; Geological Society, London, Special Publications: London, UK, 2017; Volume 448, pp. 351–368. [Google Scholar]
- Buatois, L.A. Treptichnus pedum and the Ediacaran-Cambrian boundary: Significance and caveats. Geol. Mag. 2018, 155, 174–180. [Google Scholar] [CrossRef]
- Brasier, M.D.; Cowie, J.; Taylor, M. Decision on the Precambrian-Cambrian boundary. Episodes 1994, 17, 95–100. [Google Scholar] [CrossRef]
- Geyer, G.; Landing, A. The Precambrian–Phanerozoic and Ediacaran–Cambrian boundary: A historic approach to a dilemma. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier; Brasier, A.T., McIlroy, D., McLoughlin, N., Eds.; Geological Society, London, Special Publications: London, UK, 2017; Volume 448, pp. 311–349. [Google Scholar] [CrossRef]
- McIlroy, D. Some ichnological concepts, methodologies, applications and frontiers. In The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis; McIlroy, D., Ed.; Geological Society, London, Special Publications: London, UK, 2004; Volume 228, pp. 3–27. [Google Scholar] [CrossRef]
- Dunn, F.S.; Liu, A.G.; Grazhdankin, D.V.; Vixseboxse, P.; Flannery-Sutherland, J.; Green, E.; Harris, S.; Wilby, P.R.; Donoghue, P.C.J. The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs. Sci. Adv. 2021, 7, eabe0291. [Google Scholar] [CrossRef]
- Liu, A.G.; Matthews, J.J.; Menon, L.R.; McIlroy, D.; Brasier, M.D. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B 2014, 281, 20141202. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.G.; Matthews, J.J.; Menon, L.R.; McIlroy, D.; Brasier, M.D. The arrangement of possible muscle fibres in the Ediacaran taxon Haootia quadriformis. Proc. R. Soc. B 2015, 282, 20142949. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.G.; McIlroy, D.; Brasier, M.D. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 2010, 38, 123–126. [Google Scholar] [CrossRef]
- Ivantsov, A.Y. New reconstruction of Kimberella, problematic Vendian metazoan. Paleontol. J. 2009, 43, 601–611. [Google Scholar] [CrossRef]
- Ivantsov, A.Y.; Malakhovskaya, Y.A. Giant traces of Vendian animals. Dokl. Earth Sci. 2002, 385, 618–622. [Google Scholar]
- Sperling, E.A.; Vinther, J. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol. Dev. 2010, 12, 201–209. [Google Scholar] [CrossRef]
- McIlroy, D.; Brasier, M.D.; Lang, A.S. Smothering of microbial mats by macrobiota: Implications for the Ediacara biota. J. Geol. Soc. 2009, 166, 1117–1121. [Google Scholar] [CrossRef]
- Parry, L.A.; Boggiani, P.C.; Condon, D.J.; Garwood, R.J.; Leme, J.D.M.; McIlroy, D.; Brasier, M.D.; Trindade, R.; Campanha, G.A.C.; Pacheco, M.L.A.F. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat. Ecol. Evol. 2017, 1, 1455–1464. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Zhou, C.; Yuan, X.; Xiao, S. Late Ediacaran trackways produced by bilaterian animals with paired appendages. Sci. Adv. 2018, 4, eaao6691. [Google Scholar] [CrossRef] [Green Version]
- Brasier, M.D. The Cambrian explosion and the slow burning fuse. Sci. Prog. 2000, 83, 77–92. [Google Scholar]
- Zhu, M.-Y.; Zhuravlev, A.Y.; Wood, R.A.; Zhao, F.-C.; Sukhov, S.S. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform. Geology 2017, 45, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Brasier, M.D. The Cambrian radiation event. In The Origin of Major Invertebrate Groups; House, M.R., Ed.; Academic Press: London, UK, 1979; pp. 103–159. [Google Scholar]
- Runnegar, B. The Cambrian Explosion—animals or fossils. J. Geol. Soc. Aust. 1982, 29, 395–411. [Google Scholar] [CrossRef]
- Seilacher, A. The meaning of the Cambrian explosion. In The Cambrian Explosion and the Fossil Record; Chen, J.-Y., Seilacher, A., Eds.; Bulletin of the National Museum of Natural Science: Tokyo, Japan, 1997; Volume 10, pp. 1–9. [Google Scholar]
- Dzik, J. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the ‘Cambrian explosion’. Paleobiology 2005, 31, 503–521. [Google Scholar] [CrossRef]
- Xiao, S.-H.; Laflamme, M. On the eve of animal radiation: Phylogeny, ecology, and evolution of the Ediacara biota. Trends Ecol. Evol. 2009, 24, 31–40. [Google Scholar] [CrossRef]
- Erwin, D.H.; Tweedt, S.M. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol. Ecol. 2012, 26, 417–433. [Google Scholar] [CrossRef]
- Droser, M.L.; Tarhan, L.G.; Gehling, J.G. The rise of animals in a changing environment: Global ecological innovation in the late Ediacaran. Annu. Rev. Earth Planet. Sci. 2017, 45, 593–617. [Google Scholar] [CrossRef]
- Wood, R.; Erwin, D.H. Innovation not recovery: Dynamic redox promotes metazoan radiations. Biol. Rev. 2017, 93, 863–873. [Google Scholar] [CrossRef]
- Wood, R.; Liu, A.G.; Bowyer, F.; Wilby, P.R.; Dunn, F.S.; Kenchington, C.G.; Hoyal Cuthill, J.F.; Mitchell, E.G.; Penny, A. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol. 2019, 3, 528–538. [Google Scholar] [CrossRef]
- Narbonne, G.M.; Gehling, J.G. Life after snowball: The oldest complex Ediacaran fossils. Geology 2003, 31, 27–30. [Google Scholar] [CrossRef]
- Liu, A.G.; McIlroy, D.; Matthews, J.J.; Brasier, M.D. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. J. Geol. Soc. 2011, 169, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.J.; Liu, A.G.; Yang, C.; McIlroy, D.; Levell, B.; Condon, D.J. A chronostratigraphic framework for the rise of the Ediacaran macrobiota: New constraints from Mistaken Point Ecological Reserve, Newfoundland. Geol. Soc. Am. Bull. 2020, 133, 612–624. [Google Scholar] [CrossRef]
- Budd, G.E.; Jensen, S. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. 2017, 92, 446–473. [Google Scholar] [CrossRef]
- Jensen, S.; Gehling, J.G.; Droser, M.L. Ediacara-type fossils in Cambrian sediments. Nature 1998, 393, 567–569. [Google Scholar] [CrossRef]
- Hagadorn, J.W.; Waggoner, B. Ediacaran fossils from the southwestern Great Basin, United States. J. Paleontol. 2000, 74, 349–359. [Google Scholar] [CrossRef]
- Gehling, J.G.; Jensen, S.; Droser, M.L.; Myrow, P.M.; Narbonne, G.M. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geol. Mag. 2001, 138, 213–218. [Google Scholar] [CrossRef]
- Högström, A.E.; Jensen, S.; Palacios, T.; Ebbestad, J.O.R. New information on the Ediacaran–Cambrian transition in the Vestertana Group, Finnmark, northern Norway, from trace fossils and organic-walled microfossils. Nor. J. Geol. 2013, 93, 95–106. [Google Scholar]
- Jensen, S.; Saylor, B.Z.; Gehling, J.G.; Germs, G.J. Complex trace fossils from the terminal Proterozoic of Namibia. Geology 2000, 28, 143–146. [Google Scholar] [CrossRef]
- Seilacher, A.; Buatois, L.A.; Mángano, M.G. Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 227, 323–356. [Google Scholar] [CrossRef]
- Walter, M.R. Interpreting stromatolites. Am. Sci. 1977, 65, 563–571. [Google Scholar]
- Gehling, J.G. Microbial mats in terminal Proterozoic siliciclastic Ediacaran death masks. Palaios 1999, 14, 40–57. [Google Scholar] [CrossRef]
- McIlroy, D.; Crimes, T.P.; Pauley, J.C. Fossils and matgrounds from the Neoproterozoic Longmyndian Supergroup, Shropshire, U.K. Geol. Mag. 2005, 142, 441–455. [Google Scholar] [CrossRef]
- Menon, L.R.; McIlroy, D.; Brasier, M.D. ‘Intrites’ from the Ediacaran Longmyndian Supergroup, UK: A new form of microbially-induced sedimentary structure (MISS). In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier; Brasier, A.T., McIlroy, D., McLoughlin, N., Eds.; Geological Society, London, Special Publications: London, UK, 2017; Volume 448, pp. 271–283. [Google Scholar] [CrossRef]
- Prieto-Barajas, C.M.; Valencia-Cantero, E.; Santoyo, G. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application. Electron. J. Biotechnol. 2018, 31, 48–56. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Wolfaardt, G.M.; Korber, D.R. Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl. Environ. Microbiol. 1994, 60, 1166–1173. [Google Scholar] [CrossRef] [Green Version]
- Brasier, M.D.; Liu, A.G.; Menon, L.; Matthews, J.J.; McIlroy, D.; Wacey, D. Explaining the exceptional preservation of Ediacaran rangeomorphs from Spaniard’s Bay, Newfoundland: A hydraulic model. Precambrian Res. 2013, 231, 122–135. [Google Scholar] [CrossRef]
- Harazim, D.; McIlroy, D. Mud-rich density-driven flows along an early Ordovician storm-dominated shoreline: Implications for shallow-marine facies models. J. Sediment. Res. 2015, 85, 509–528. [Google Scholar] [CrossRef]
- Liu, A.G.; Matthews, J.J.; McIlroy, D. The Beothukis/Culmofrons problem and its bearing on Ediacaran macrofossil taxonomy: Evidence from an exceptional new fossil locality. Palaeontology 2016, 59, 45–58. [Google Scholar] [CrossRef]
- Taylor, R.S.; Matthews, J.J.; Nicholls, R.; McIlroy, D. A re-assessment of the taxonomy, palaeobiology and taphonomy of the rangeomorph organism Hapsidophyllas flexibilis from the Ediacaran of Newfoundland, Canada. Paläontolog. Z. 2021, 95, 187–207. [Google Scholar] [CrossRef]
- Ortega, J.M.; Ortega, J.A.; Stein, J.R.; Julian, D. H2S toxicity via oxidative damage in erythrocytes of a sulfide-tolerant marine invertebrate. FASEB J. 2008, 22, 758. [Google Scholar] [CrossRef]
- Dufour, S.C.; McIlroy, D. Ediacaran pre-placozoan diploblasts in the Avalonian biota: The role of chemosynthesis in the evolution of early animal life. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier; Brasier, A.T., McIlroy, D., McLoughlin, N., Eds.; Geological Society, London, Special Publications: London, UK, 2017; Volume 448, pp. 211–221. [Google Scholar] [CrossRef]
- Dufour, S.C.; McIlroy, D. An Ediacaran pre-placozoan alternative to the pre- sponge route towards the Cambrian explosion of animal life: A comment on Cavalier- Smith 2017. Philos. Trans. R. Soc. B 2017, 373, 20170148. [Google Scholar] [CrossRef]
- McIlroy, D.; Dufour, S.C.; Taylor, R.; Nicholls, R. The role of symbiosis in the first colonization of the seafloor by macrobiota: Insights from the oldest Ediacaran biota (Newfoundland, Canada). Biosystems 2021, 205, 104413. [Google Scholar] [CrossRef]
- Seilacher, A.; MacClintock, C. Crinoid anchoring strategies for soft-bottom dwelling. Palaios 2005, 20, 224–240. [Google Scholar] [CrossRef]
- Frey, R.W. The Lebensspuren of some common marine invertebrates near Beaufort, North Carolina. II. Anemone Burrows. J. Paleontol. 1970, 44, 308–311. [Google Scholar]
- Bromley, R.G. Trace Fossils. Biology, Taphonomy and Applications, 2nd ed.; Chapman & Hall: London, UK, 1996; pp. 1–361. [Google Scholar]
- Loenarz, C.; Coleman, M.L.; Boleiniger, A.; Schierwater, B.; Holland, P.W.H.; Ratcliffe, P.J.; Schofield, C.J. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. Eur. Mol. Biol. Rep. 2011, 12, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Dufour, S.C.; Felbeck, H. Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 2003, 426, 65–67. [Google Scholar] [CrossRef]
- Dubilier, N.; Bergin, C.; Lott, C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Natl. Rev. Microbiol. 2008, 6, 725–740. [Google Scholar] [CrossRef]
- Dufour, S.C. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biol. Bull. 2005, 208, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Hawco, J.; Kenchington, C.G.; Taylor, R.S.; McIlroy, D. A multivariate statistical analysis of the Ediacaran rangeomorph taxa Beothukis and Culmofrons. Palaios 2020, 35, 495–511. [Google Scholar] [CrossRef]
- McIlroy, D.; Hawco, J.; McKean, C.; Nicholls, R.; Pasinetti, G.; Taylor, R. Palaeobiology of the reclining rangeomorph Beothukis from the Ediacaran Mistaken Point Formation of southeastern Newfoundland. Geol. Mag. 2020, 452, 1–15. [Google Scholar] [CrossRef]
- Droser, M.L.; Gehling, J.G.; Dzaugis, M.E.; Kennedy, M.J.; Rice, D.; Allen, N.F. A new Ediacaran fossil with a novel sediment displacive life habit. J. Paleontol. 2014, 88, 145–151. [Google Scholar] [CrossRef]
- Aller, R.C. Experimental studies of changes produced by deposit feeders on pore water, sediment and overlying water chemistry. Am. J. Sci. 1978, 278, 1185–1234. [Google Scholar] [CrossRef]
- Aller, R.C. The effects of macrobenthos on chemical properties of marine sediments and overlying water. In Animal-Sediment Relations; McCall, P.L., Tevesz, M.J.S., Eds.; Plenum: New York, NY, USA, 1982; pp. 53–102. [Google Scholar]
- Aller, R.C. The importance of relict burrow structure and burrow irrigation in controlling sedimentary solute distributions. Geochim. Cosmochim. Acta 1984, 48, 1929–1934. [Google Scholar] [CrossRef]
- Aller, R.C. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation. Chem. Geol. 1994, 114, 331–345. [Google Scholar] [CrossRef]
- White, D.C. Analysis of microorganisms in terms of quantity and activity in natural environments. Microbes in their natural environments. Soc. Gen. Microbiol. Symp. 1983, 34, 37–66. [Google Scholar]
- Konhauser, K. Introduction to Geomicrobiology; Blackwell Science: Oxford, UK, 2007; p. 425. ISBN 978-0-632-05454-1. [Google Scholar]
- Blackburn, N.D.; Blackburn, T.H. A reaction diffusion model of C-N-S-O species in a stratified sediment. FEMS Microbiol. Ecol. 1993, 102, 207–215. [Google Scholar] [CrossRef]
- Petersen, J.M.; Dubilier, N. Methanotrophic symbioses in marine invertebrates. Environ. Microbiol. Rep. 2009, 1, 319–335. [Google Scholar] [CrossRef]
- Walter, M.R.W.; Heys, G. Links between the rise of the Metazoa and the decline of the stromatolites. Precambrian Res. 1985, 29, 149–174. [Google Scholar] [CrossRef]
- Harazim, D.; Callow, R.H.T.; McIlroy, D. Microbial mats implicated in the generation of intrastratal shrinkage (‘synaeresis’) cracks. Sedimentology 2013, 60, 1621–1638. [Google Scholar] [CrossRef]
- McIlroy, D.; Walter, M.R. A reconsideration of the biogenicity of Arumberia banksi Glaessner & Walter. Alcheringia 1997, 21, 79–80. [Google Scholar] [CrossRef]
- Pflüger, F. Matground structures and redox facies. Palaios 1999, 14, 25–39. [Google Scholar] [CrossRef]
- Noffke, N. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold-water environment (Lower Arenigian, Montagne Noire, France. Sediment. Geol. 2000, 136, 207–215. [Google Scholar] [CrossRef]
- Noffke, N.; Knoll, A.H.; Gritzinger, J.P. Sedimentary controls on the formation and preservation of microbial mat in siliciclastic deposits: A case study from the Upper Proterozoic Nama Group, Namibia. Palaios 2002, 17, 533–544. [Google Scholar] [CrossRef]
- McMahon, S.; Matthews, J.J.; Brasier, A.T.; Still, J. Late Ediacaran life on land: Desiccated microbial mats and large biofilm streamers. Proc. R. Soc. B 2021, 288, 20211875. [Google Scholar] [CrossRef]
- Sheehan, P.M.; Harris, M.T. Microbialite resurgence after the Late Ordovician extinction. Nature 2004, 430, 75–78. [Google Scholar] [CrossRef]
- Herringshaw, L.G.; Sherwood, O.A.; McIlroy, D. Ecosystem engineering by bioturbating polychaetes in event bed microcosms. Palaios 2010, 25, 46–58. [Google Scholar] [CrossRef]
- Herringshaw, L.G.; Callow, R.H.T.; McIlroy, D. Engineering the Cambrian explosion: The earliest bioturbators as ecosystem engineers. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier; Brasier, A.T., McIlroy, D., McLoughlin, N., Eds.; Geological Society, London, Special Publications: London, UK, 2017; Volume 448, pp. 369–382. [Google Scholar] [CrossRef]
- Mata, S.A.; Bottjer, D.J. Development of Lower Triassic wrinkle structures: Implications for the search for life on other planets. Astrobiology 2009, 9, 895–906. [Google Scholar] [CrossRef]
- Feng, X. Reassessing Early Triassic wrinkle structures from moderate-high latitudes: An updated interpretation of metazoan colonization in matground ecosystems after the Permian-Triassic mass extinction. Glob. Planet. Change 2021, 205, 103590. [Google Scholar] [CrossRef]
- Seilacher, A.; Hagadorn, J.W. Early molluscan evolution: Evidence from the trace fossil record. Palaios 2010, 25, 565–575. [Google Scholar] [CrossRef]
- Meyer, M.; Xiao, S.; Gill, B.C.; Schiffabuer, J.D.; Chen, Z.; Zhou, C.; Yuan, X. Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengjing Formation of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 396, 62–74. [Google Scholar] [CrossRef]
- Seilacher, A. Biomat-related lifestyles in the Precambrian. Palaios 1999, 14, 86–93. [Google Scholar] [CrossRef]
- Jensen, S.; Runnegar, B.N. A complex trace fossil from the Spitskop Member (terminal Ediacaran–? Lower Cambrian) of southern Namibia. Geol. Mag. 2005, 142, 561–569. [Google Scholar] [CrossRef]
- Baucon, A.; Ronchi, A.; Felletti, F.; Neto De Carvalho, C. Evolution of Crustaceans at the edge of the end-Permian crisis: Ichnonetwork analysis of the fluvial succession of Nurra (Permian-Triassic, Sardinia, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 410, 74–103. [Google Scholar] [CrossRef]
- Herringshaw, L.G.; McIlroy, D. Bioinfiltration: Irrigation-driven transport of clay particles through bioturbated sediments. J. Sediment. Res. 2013, 83, 443–450. [Google Scholar] [CrossRef]
- McIlroy, D. Ichnological analysis: The commonground between ichnofacies workers and ichnofabricanalysts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 270, 332–338. [Google Scholar] [CrossRef]
- Laing, B.A.; Buatois, L.A.; Mángano, M.G.; Narbonne, G.M.; Gougeon, R.C. Gyrolithes from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: Exploring the onset of complex burrowing. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 495, 171–185. [Google Scholar] [CrossRef]
- Narbonne, G.M.; Myrow, P.M.; Landing, E.; Anderson, M.M. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Can. J. Earth Sci. 1987, 24, 1277–1293. [Google Scholar] [CrossRef]
- Miller, S.A. North American Geology and Paleontology for the Use of Amateurs, Students, and Scientists; Western Methodist Book Concern: Cincinnati, OH, USA, 1889; p. 664. [Google Scholar]
- Muñiz Guinea, F.; Mangano, M.G.; Buatois, L.A.; Podeniene, V.; Vintaned, J.A.V.; Mayoral, E.J. Compound biogenic structures resulting from ontogenetic variation: An example from a modern dipteran. Span. J. Palaeontol. 2014, 29, 83–94. [Google Scholar] [CrossRef]
- Jensen, S. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Foss. Strat. 1997, 42, 1–112. [Google Scholar]
- Orłowski, S.; Żylinńska, A. Non-arthropod burrows from the Middle and Late Cambrian of the Holy Cross Mountains, Poland. Acta Palaeontol. Pol. 1996, 41, 385–409. [Google Scholar]
- Babcock, L.E.; Peng, S.; Zhu, M.; Xiao, S.; Ahlberg, P. Proposed reassessment of the Cambrian GSSP. J. Afr. Earth Sci. 2014, 98, 3–10. [Google Scholar] [CrossRef]
- Fuchs, T. Studien über Fucoiden und Hieroglyphen. Denkshriften der Kaiserlichen Akademie der Wissenshaften, Matematisch Naturwissenschaftliche Klasse; Aus der Kaiserlich-Königlichen Hof- und Staatsdruckerei: Wien, Austria, 1895; Volume 62, pp. 369–448. [Google Scholar]
- Seilacher, A. Pattern analysis of Paleodictyon and related trace fossils. In Trace Fossils 2; Crimes, T.P., Harper, J.C., Eds.; Special Publication of Geological Journal Seel House Press: Liverpool, UK, 1977; Volume 9, pp. 289–334. [Google Scholar]
- Seilacher, A. Paleontological studies on turbidite sedimentation and erosion. J. Geol. 1962, 70, 227–234. [Google Scholar] [CrossRef]
- Miller, W., III. Paleoecology of graphoglyptids. Ichnos 1991, 1, 305–312. [Google Scholar] [CrossRef]
- Uchman, A. Phanerozoic history of deep-sea trace fossils. In The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis; McIlroy, D., Ed.; Geological Society of London Special Publication: London, UK, 2004; Volume 228, pp. 125–139. [Google Scholar]
- Fürsich, F.T.; Taheri, J.; Wilmsen, M. New occurrences of the trace fossil Paleodictyon in shallow marine environments: Examples from the Triassic–Jurassic of Iran. Palaios 2007, 22, 408–416. [Google Scholar] [CrossRef]
- Olivero, E.B.; López Cabrera, M.I.; Malumián, N.; Torres Carbonell, P.J. Eocene graphoglyptids from shallow-marine, high-energy, organic-rich, and bioturbated turbidites, Fuegian Andes, Argentina. Acta Geol. Pol. 2010, 60, 77–91. [Google Scholar]
- Rona, P.A.; Seilacher, A.; de Vargas, C.; Gooday, A.J.; Bernhard, J.M.; Bowser, S.; Vetriani, C.; Wirsen, C.O.; Mullineaux, L.; Sherrell, R. Paleodictyon nodosum: A living fossil on the deep-sea floor. Deep.-Sea Res. II 2009, 56, 1700–1712. [Google Scholar] [CrossRef]
- Fan, R.; Gong, Y.; Uchman, A. Topological analysis of graphoglyptid trace fossils, a study of macrobenthic solitary and collective animal behaviors in the deep-sea environment. Paleobiology 2018, 44, 306–325. [Google Scholar] [CrossRef]
- Uchman, A.; Bromley, R.G.; Leszczynski, S. Ichnogenus Treptichnus in Eocene flysch, Carpathians, Poland: Taxonomy and preservation. Hist. Biol. 1998, 5, 269–275. [Google Scholar]
- Ekdale, A.A. Graphoglyptid burrows in modern deep sea sediment. Science 1980, 207, 304–306. [Google Scholar] [CrossRef]
- Gingras, M.; Hagadorn, J.W.; Seilacher, A.; Lalonde, S.V.; Pecoits, E.; Petrash, D.; Konhauser, K.O. Possible evolution of mobile animals in association with microbial mats. Nat. Geosci. 2011, 4, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Banks, N.L. Trace fossils from the late Precambrian and Lower Cambrian of Finnmark, Norway. In Trace Fossils; Crimes, T.P., Harper, J.C., Eds.; House Press: Liverpool, UK, 1970; Volume 3, pp. 19–34. [Google Scholar]
- Gingras, M.K.; Dashtgard, S.E.; MacEachern, J.A.; Pemberton, S.G. Biology of shallow marine ichnology: A modern perspective. Aquat. Biol. 2010, 2, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Frey, R.W.; Bromley, R.G. Ichnology of American chalks: The Selma Group (Upper Cretaceous), western Alabama. Can. J. Earth Sci. 1985, 22, 801–828. [Google Scholar] [CrossRef]
- Fedonkin, M.A. Paleoikhnologiya vendskikh Metazoa. [Paleoichnology of the Vendian Metazoa]. In Vendskaya Sistema l; Sokolov, B., Ivanovskij, A.B., Eds.; Paleontologiya Nauka: Moskva, Russia, 1985; Volume 1, pp. 12–117. [Google Scholar]
- Swinbanks, D. Paleodictyon: The traces of infaunal xenophyophores? Science 1982, 218, 47–49. [Google Scholar] [CrossRef]
- Severin, K.P.; Culver, S.J.; Blanppied, C. Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifera, in fine-grained sediment. Sedimentology 1982, 29, 879–901. [Google Scholar] [CrossRef]
- Baliński, A.; Sun, Y.; Dzik, J. Marine nematodes from 470 million years old Early Ordovician rocks in China. Nematology 2013, 15, 567–574. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McIlroy, D. Were the First Trace Fossils Really Burrows or Could They Have Been Made by Sediment-Displacive Chemosymbiotic Organisms? Life 2022, 12, 136. https://doi.org/10.3390/life12020136
McIlroy D. Were the First Trace Fossils Really Burrows or Could They Have Been Made by Sediment-Displacive Chemosymbiotic Organisms? Life. 2022; 12(2):136. https://doi.org/10.3390/life12020136
Chicago/Turabian StyleMcIlroy, Duncan. 2022. "Were the First Trace Fossils Really Burrows or Could They Have Been Made by Sediment-Displacive Chemosymbiotic Organisms?" Life 12, no. 2: 136. https://doi.org/10.3390/life12020136
APA StyleMcIlroy, D. (2022). Were the First Trace Fossils Really Burrows or Could They Have Been Made by Sediment-Displacive Chemosymbiotic Organisms? Life, 12(2), 136. https://doi.org/10.3390/life12020136