The Short-Term Antibacterial Activity of Three Selected Endodontic Sealers against Enterococcus faecalis Bacterial Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dentine Specimens
2.2. Infection of Root Dentine Blocks
2.3. Placement of Sealers
2.4. Testing the Antibacterial Activity
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergenholtz, G. Micro organisms from necrotic pulp of traumatized teeth. Odont. Revy 1974, 25, 347–358. [Google Scholar]
- Rôças, I.N.; Siqueira, J.F. Characterization of microbiota of root canal-treated teeth with posttreatment disease. J. Clin. Microbiol. 2012, 50, 1721–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabassum, S.; Khan, F.R. Failure of endodontic treatment: The usual suspects. Eur. J. Dent. 2016, 10, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.P.F.A.; Pinheiro, E.T.; Gadê-Neto, C.R.; Sousa, E.L.R.; Ferraz, C.C.R.; Zaia, A.A.; Teixeira, F.B.; Souza-Filho, F.J. Microbiological examination of infected dental root canals. Oral Microbiol. Immunol. 2004, 19, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Sakko, M.; Tjäderhane, L.; Rautemaa-Richardson, R. Microbiology of Root Canal Infections. Prim. Dent. J. 2016, 5, 84–89. [Google Scholar] [CrossRef]
- Waltimo, T.; Trope, M.; Haapasalo, M.; Ørstavik, D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J. Endod. 2005, 31, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Torabinejad, M.; Fouad, A.F.; Walton, R.E. Endodontics: Principles and Practice, 5th ed.; Elsevier Saunders: St. Louis, MO, USA, 2014; pp. 278, 322–323. [Google Scholar]
- Iandolo, A.; Amato, M.; Dagna, A.; Poggio, C.; Abdellatif, D.; Franco, V.; Pantaleo, G. Intracanal heating of sodium hypochlorite: Scanning electron microscope evaluation of root canal walls. J. Conserv. Dent. 2018, 21, 569–573. [Google Scholar] [CrossRef]
- Mohmmed, S.A.; Vianna, M.E.; Penny, M.R.; Hilton, S.T.; Mordan, N.J.; Knowles, J.C. Investigations into in situ Enterococcus faecalis biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model. Int. Endod. J. 2018, 51, 649–662. [Google Scholar] [CrossRef]
- Konstantinidi, E.; Psimma, Z.; Chávez de Paz, L.E.; Boutsioukis, C. Apical negative pressure irrigation versus syringe irrigation: A systematic review of cleaning and disinfection of the root canal system. Int. Endod. J. 2017, 50, 1034–1054. [Google Scholar] [CrossRef] [Green Version]
- Fabricius, L.; Dahlén, G.; Sundqvist, G.; Happonen, R.P.; Möller, A.J.R. Influence of residual bacteria on periapical tissue healing after chemomechanical treatment and root filling of experimentally infected monkey teeth. Eur. J. Oral Sci. 2006, 114, 278–285. [Google Scholar] [CrossRef]
- Özcan, E.; Eldeniz, A.U.; Ari, H. Bacterial killing by several root filling materials and methods in an ex vivo infected root canal model. Int. Endod. J. 2011, 44, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.K.; Dummer, P.M.H.; Wesselink, P.R. Consequences of and strategies to deal with residual post-treatment root canal infection. Int. Endod. J. 2006, 39, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Saleh, I.M.; Ruyter, I.E.; Haapasalo, M.; Ørstavik, D. Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. Int. Endod. J. 2004, 37, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Kwak, S.W.; Ha, J.H.; Lee, W.C.; Kim, H.C. Physicochemical Properties of Epoxy Resin-Based and Bioceramic-Based Root Canal Sealers. Bioinorg. Chem. Appl. 2017, 2017, 2582849. [Google Scholar] [CrossRef] [Green Version]
- Arnaldo, C. Endodontics. Volume II; Edizioni Odontoiatriche Il Tridente: Florence, Italy, 2005; p. 610. [Google Scholar]
- Li, G.H.; Niu, L.N.; Zhang, W.; Olsen, M.; De-Deus, G.; Eid, A.A.; Chen, J.H.; Pashley, D.H.; Tay, F.R. Ability of new obturation materials to improve the seal of the root canal system: A review. Acta Biomater. 2014, 10, 1050–1063. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, Z.; Shalavi, S.; Yazdizadeh, M. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review. Chonnam Med. J. 2012, 48, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Davies, J.K.; Sundqvist, G.; Figdor, D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int. Endod. J. 2002, 35, 321–328. [Google Scholar] [CrossRef]
- Hoshino, R.A.; da Silva, G.F.; Delfino, M.M.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Sasso-Cerri, E.; Filho, I.B.; Cerri, P.S. Physical Properties, Antimicrobial Activity and In Vivo Tissue Response to Apexit Plus. Materials 2020, 13, 1171. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, K.M.; Berman, L.H. Cohen’s Pathways of the Pulp, 11th ed.; Mosby Elsevier: St. Louis, MO, USA, 2016; p. 199. [Google Scholar]
- Swimberghe, R.C.D.; Coenye, T.; De Moor, R.J.G.; Meire, M.A. Biofilm model systems for root canal disinfection: A literature review. Int. Endod. J. 2019, 52, 604–628. [Google Scholar] [CrossRef] [Green Version]
- Camargo, C.H.R.; Siviero, M.; Camargo, S.E.A.; de Oliveira, S.H.G.; Carvalho, C.A.T.; Valera, M.C. Topographical, Diametral, and Quantitative Analysis of Dentin Tubules in the Root Canals of Human and Bovine Teeth. J. Endod. 2007, 33, 422–426. [Google Scholar] [CrossRef]
- Schilke, R.; Lisson, J.A.; Bauß, O.; Geurtsen, W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch. Oral Biol. 2000, 45, 355–361. [Google Scholar] [CrossRef]
- Alsubait, S.; Albader, S.; Alajlan, N.; Alkhunaini, N.; Niazy, A.; Almahdy, A. Comparison of the antibacterial activity of calcium silicate- and epoxy resin-based endodontic sealers against Enterococcus faecalis biofilms: A confocal laser-scanning microscopy analysis. Odontology 2019, 107, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Heling, I.; Chandler, N.P. The antimicrobial effect within dentinal tubules of four root canal sealers. J. Endod. 1996, 22, 257–259. [Google Scholar] [CrossRef]
- Siboni, F.; Taddei, P.; Zamparini, F.; Prati, C.; Gandolfi, M.G. Properties of bioroot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int. Endod. J. 2017, 50, 120–136. [Google Scholar] [CrossRef] [Green Version]
- Marín-Bauza, G.A.; Silva-Sousa, Y.T.C.; da Cunha, S.A.; Rached, F.J.A.; Bonetti-Filho, I.; Sousa-Neto, M.D.; Miranda, C.E.S. Physicochemical properties of endodontic sealers of different bases. J. Appl. Oral Sci. 2012, 20, 455–461. [Google Scholar] [CrossRef]
- Camilleri, J. Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 2007, 40, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Zancan, R.F.; Vivan, R.R.; Milanda Lopes, M.R.; Weckwerth, P.H.; de Andrade, F.B.; Ponce, J.B.; Duarte, M.A.H. Antimicrobial Activity and Physicochemical Properties of Calcium Hydroxide Pastes Used as Intracanal Medication. J. Endod. 2016, 42, 1822–1828. [Google Scholar] [CrossRef]
- Zancan, R.F.; Calefi, P.H.S.; Borges, M.M.B.; Lopes, M.R.M.; de Andrade, F.B.; Vivan, R.R.; Duarte, M.A.H. Antimicrobial activity of intracanal medications against both Enterococcus faecalis and Candida albicans biofilm. Microsc. Res. Tech. 2019, 82, 494–500. [Google Scholar] [CrossRef]
- Colombo, M.; Poggio, C.; Dagna, A.; Meravini, M.V.; Riva, P.; Trovati, F.; Pietrocola, G. Biological and physico-chemical properties of new root canal sealers. J. Clin. Exp. Dent. 2018, 10, 120–126. [Google Scholar] [CrossRef]
- Bukhari, S.; Karabucak, B. The Antimicrobial Effect of Bioceramic Sealer on an 8-week Matured Enterococcus faecalis Biofilm Attached to Root Canal Dentinal Surface. J. Endod. 2019, 45, 1047–1052. [Google Scholar] [CrossRef]
- Shin, J.H.; Lee, D.Y.; Lee, S.H. Comparison of antimicrobial activity of traditional and new developed root sealers against pathogens related root canal. J. Dent. Sci. 2018, 13, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Kahn, F.H.; Rosenberg, P.A.; Schertzer, L.; Korthals, G.; Nguyen, P.N.T. An in-vitro evaluation of sealer placement methods. Int. Endod. J. 1997, 30, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, H.K.; Sirén, E.K.; Waltimo, T.M.T.; Ørstavik, D.; Haapasalo, M.P.P. Inactivation of local root canal medicaments by dentine: An in vitro study. Int. Endod. J. 2000, 33, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.J.N.L.; Santos, C.C.; Zaia, A.A. Long-term cytotoxic effects of contemporary root canalsealers. J. Appl. Oral Sci. 2013, 21, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef]
- Huang, F.M.; Tai, K.W.; Chou, M.Y.; Chang, Y.C. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int. Endod. J. 2002, 35, 153–158. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Patni, P.M.; Chandak, M.; Jain, P.; Patni, M.J.; Jain, S.; Mishra, P.; Jain, V. Stereomicroscopic evaluation of sealing ability of four different root canal sealers—An invitro study. J. Clin. Diagnostic Res. 2016, 10, 37–39. [Google Scholar] [CrossRef]
- Jagtap, P.; Shetty, R.; Agarwalla, A.; Wani, P.; Bhargava, K.; Martande, S. Comparative evaluation of cytotoxicity of root canal sealers on cultured human periodontal fibroblasts: In vitro study. J. Contemp. Dent. Pract. 2018, 19, 847–852. [Google Scholar]
- Ioannidis, K.; Beltes, P.; Lambrianidis, T.; Kapagiannidis, D.; Karagiannis, V. Crown discoloration induced by endodontic sealers: Spectrophotometric measurement of Commission International de I’Eclairage’s L*, a*, b* chromatic parameters. Oper. Dent. 2013, 38, E91–E102. [Google Scholar] [CrossRef] [Green Version]
- Prestegaard, H.; Portenier, I.; Ørstavik, D.; Kayaoglu, G.; Haapasalo, M.; Endal, U. Antibacterial activity of various root canal sealers and root-end filling materials in dentin blocks infected ex vivo with Enterococcus faecalis. Acta Odontol. Scand. 2014, 72, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Heyder, M.; Kranz, S.; Völpel, A.; Pfister, W.; Watts, D.C.; Jandt, K.D.; Sigusch, B.W. Antibacterial effect of different root canal sealers on three bacterial species. Dent. Mater. 2013, 29, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Kayaoglu, G.; Erten, H.; Alaçam, T.; Ørstavik, D. Short-term antibacterial activity of root canal sealers towards Enterococcus faecalis. Int. Endod. J. 2005, 38, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.M.; Shen, Y.; Zheng, W.; Li, L.; Zheng, Y.F.; Haapasalo, M. Physical properties of 5 root canal sealers. J. Endod. 2013, 39, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Komabayashi, T.; Colmenar, D.; Cvach, N.; Bhat, A.; Primus, C.; Imai, Y. Comprehensive review of current endodontic sealers. Dent. Mater. J. 2020, 39, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Heil, J.; Reifferscheid, G.; Waldmann, P.; Leyhausen, G.; Geurtsen, W. Genotoxicity of dental materials. Mutat. Res. 1996, 368, 181–194. [Google Scholar] [CrossRef]
- Slutzky-Goldberg, I.; Slutzky, H.; Solomonov, M.; Moshonov, J.; Weiss, E.I.; Matalon, S. Antibacterial properties of four endodontic sealers. J. Endod. 2008, 34, 735–738. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Y.; Ruse, N.D.; Haapasalo, M. Antibacterial Activity of Endodontic Sealers by Modified Direct Contact Test Against Enterococcus faecalis. J. Endod. 2009, 35, 1051–1055. [Google Scholar] [CrossRef]
- Song, Y.-S.; Choi, Y.; Lim, M.-J.; Yu, M.-K.; Hong, C.-U.; Lee, K.-W.; Min, K.S. In vitro evaluation of a newly produced resin-based endodontic sealer. Restor. Dent. Endod. 2016, 41, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Leonardo, M.R.; Da Silva, L.A.B.; Filho, M.T.; Silva, R.S. Da Release of formaldehyde by 4 endodontic sealers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 88, 221–225. [Google Scholar] [CrossRef]
Sealer | Specimen Number | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Endomethasone | 1 × 106 | 1 × 105 | 1 × 103 | 1 × 102 | 1 × 104 |
ADSeal | 1 × 103 | 1 × 103 | 1 × 105 | 1 × 103 | 1 × 105 |
BioRoot RCS | 1 × 106 | 1 × 102 | 1 × 102 | 1 × 105 | 1 × 106 |
Apex Cal (Negative Control Group) | 1 × 106 | 1 × 106 | 1 × 105 | 1 × 106 | 1 × 105 |
No sealer (Positive Control Group) | 1 × 106 | 1 × 106 | 1 × 107 | 1 × 102 | 1 × 107 |
Sealer | N | Mean | SD | Minimum | Maximum | p |
---|---|---|---|---|---|---|
Endomethasone | 5 | 222,220 | 436,804.4 | 100 | 1,000,000 | 0.179 |
ADSeal | 5 | 40,600 | 54,224.5 | 1000 | 100,000 | |
BioRoot RCS | 5 | 420,040 | 530,997.2 | 100 | 1,000,000 | |
Apex Cal (Negative Control Group) | 5 | 640,000 | 492,950.3 | 100,000 | 1,000,000 |
Sealer | N | Mean | SD | Minimum | Maximum | p |
---|---|---|---|---|---|---|
Endomethasone | 5 | 222,220 | 436,804.4 | 100 | 1,000,000 | 0.049 |
ADSeal | 5 | 40,600 | 54,224.5 | 1000 | 100,000 | |
BioRoot RCS | 5 | 420,040 | 530,997.2 | 100 | 1,000,000 | |
No sealer (Positive Control Group) | 5 | 4,400,020 | 5,128,331.1 | 100 | 10,000,000 |
No Sealer (Positive Control Group) vs | p |
---|---|
Endomethasone | 0.054 |
ADSeal | 0.043 |
BioRoot RCS | 0.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, M.; Morozova, Y.; Moštěk, R.; Holík, P.; Somolová, L.; Novotná, B.; Zábojníková, S.; Bogdanová, K.; Langová, K.; Voborná, I.; et al. The Short-Term Antibacterial Activity of Three Selected Endodontic Sealers against Enterococcus faecalis Bacterial Culture. Life 2022, 12, 158. https://doi.org/10.3390/life12020158
Rosa M, Morozova Y, Moštěk R, Holík P, Somolová L, Novotná B, Zábojníková S, Bogdanová K, Langová K, Voborná I, et al. The Short-Term Antibacterial Activity of Three Selected Endodontic Sealers against Enterococcus faecalis Bacterial Culture. Life. 2022; 12(2):158. https://doi.org/10.3390/life12020158
Chicago/Turabian StyleRosa, Matej, Yuliya Morozova, Roman Moštěk, Pavel Holík, Lucia Somolová, Barbora Novotná, Soňa Zábojníková, Kateřina Bogdanová, Kateřina Langová, Iva Voborná, and et al. 2022. "The Short-Term Antibacterial Activity of Three Selected Endodontic Sealers against Enterococcus faecalis Bacterial Culture" Life 12, no. 2: 158. https://doi.org/10.3390/life12020158
APA StyleRosa, M., Morozova, Y., Moštěk, R., Holík, P., Somolová, L., Novotná, B., Zábojníková, S., Bogdanová, K., Langová, K., Voborná, I., Pospíšilová, L., & Kovařík, J. P. (2022). The Short-Term Antibacterial Activity of Three Selected Endodontic Sealers against Enterococcus faecalis Bacterial Culture. Life, 12(2), 158. https://doi.org/10.3390/life12020158