Impaired Mitochondrial Bioenergetics under Pathological Conditions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maranzana, E.; Barbero, G.; Falasca, A.I.; Lenaz, G.; Genova, M.L. mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox Signal. 2013, 19, 1469–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesci, S. Mitochondrial permeability transition, F1FO-ATPase and calcium: An enigmatic triangle. EMBO Rep. 2017, 18, 1265–1267. [Google Scholar] [CrossRef] [PubMed]
- Nesci, S.; Trombetti, F.; Pagliarani, A.; Ventrella, V.; Algieri, C.; Tioli, G.; Lenaz, G. Molecular and supramolecular structure of the mitochondrial oxidative phosphorylation system: Implications for pathology. Life 2021, 11, 242. [Google Scholar] [CrossRef]
- Rugolo, M.; Zanna, C.; Ghelli, A.M. Organization of the respiratory supercomplexes in cells with defective complex III: Structural features and metabolic consequences. Life 2021, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Kahlhöfer, F.; Gansen, M.; Zickermann, V. Accessory subunits of the matrix arm of mitochondrial complex I with a focus on subunit NDUFS4 and its role in complex I function and assembly. Life 2021, 11, 455. [Google Scholar] [CrossRef]
- Dang, Q.-C.L.; Phan, D.H.; Johnson, A.N.; Pasapuleti, M.; Alkhaldi, H.A.; Zhang, F.; Vik, S.B. Analysis of human mutations in the supernumerary subunits of complex i. Life 2020, 10, 296. [Google Scholar] [CrossRef]
- Ding, Q.; Kucharczyk, R.; Zhao, W.; Dautant, A.; Xu, S.; Niedzwiecka, K.; Su, X.; Giraud, M.-F.; Gombeau, K.; Zhang, M.; et al. Case report: Identification of a novel variant (m.8909T>C) of human mitochondrial ATP6 gene and its functional consequences on yeast ATP synthase. Life 2020, 10, 215. [Google Scholar] [CrossRef]
- Galber, C.; Carissimi, S.; Baracca, A.; Giorgio, V. The ATP synthase deficiency in human diseases. Life 2021, 11, 325. [Google Scholar] [CrossRef]
- Jové, M.; Mota-Martorell, N.; Torres, P.; Ayala, V.; Portero-Otin, M.; Ferrer, I.; Pamplona, R. The causal role of lipoxidative damage in mitochondrial bioenergetic dysfunction linked to Alzheimer’s disease pathology. Life 2021, 11, 388. [Google Scholar] [CrossRef]
- Needs, H.I.; Protasoni, M.; Henley, J.M.; Prudent, J.; Collinson, I.; Pereira, G.C. Interplay between mitochondrial protein import and respiratory complexes assembly in neuronal health and degeneration. Life 2021, 11, 432. [Google Scholar] [CrossRef]
- Franco, L.V.R.; Bremner, L.; Barros, M.H. Human mitochondrial pathologies of the respiratory chain and ATP synthase: Contributions from studies of Saccharomyces cerevisiae. Life 2020, 10, 304. [Google Scholar] [CrossRef] [PubMed]
- No, M.-H.; Choi, Y.; Cho, J.; Heo, J.-W.; Cho, E.-J.; Park, D.-H.; Kang, J.-H.; Kim, C.-J.; Seo, D.Y.; Han, J.; et al. Aging promotes mitochondria-mediated apoptosis in rat hearts. Life 2020, 10, 178. [Google Scholar] [CrossRef]
- Morciano, G.; Vitto, V.A.M.; Bouhamida, E.; Giorgi, C.; Pinton, P. Mitochondrial bioenergetics and dynamism in the failing heart. Life 2021, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Wasmus, C.; Dudek, J. Metabolic alterations caused by defective cardiolipin remodeling in inherited cardiomyopathies. Life 2020, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Casuso, R.A.; Huertas, J.R. Mitochondrial functionality in inflammatory pathology-modulatory role of physical activity. Life 2021, 11, 61. [Google Scholar] [CrossRef]
- Elesela, S.; Lukacs, N.W. Role of mitochondria in viral infections. Life 2021, 11, 232. [Google Scholar] [CrossRef]
- Brillo, V.; Chieregato, L.; Leanza, L.; Muccioli, S.; Costa, R. Mitochondrial dynamics, ROS, and cell signaling: A blended overview. Life 2021, 11, 332. [Google Scholar] [CrossRef]
- Grubelnik, V.; Zmazek, J.; Markovič, R.; Gosak, M.; Marhl, M. Mitochondrial dysfunction in pancreatic alpha and beta cells associated with type 2 diabetes mellitus. Life 2020, 10, 348. [Google Scholar] [CrossRef]
- Motlagh Scholle, L.; Schieffers, H.; Al-Robaiy, S.; Thaele, A.; Lehmann Urban, D.; Zierz, S. Palmitate but not oleate exerts a negative effect on oxygen utilization in myoblasts of patients with the m.3243A>G mutation: A pilot study. Life 2020, 10, 204. [Google Scholar] [CrossRef]
- Acin-Perez, R.; Benincá, C.; Shabane, B.; Shirihai, O.S.; Stiles, L. Utilization of human samples for assessment of mitochondrial bioenergetics: Gold standards, limitations, and future perspectives. Life 2021, 11, 949. [Google Scholar] [CrossRef]
- Kruse, C.-J.; Stern, D.; Mouithys-Mickalad, A.; Niesten, A.; Art, T.; Lemieux, H.; Votion, D.-M. In vitro assays for the assessment of impaired mitochondrial bioenergetics in equine atypical myopathy. Life 2021, 11, 719. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesci, S.; Lenaz, G. Impaired Mitochondrial Bioenergetics under Pathological Conditions. Life 2022, 12, 205. https://doi.org/10.3390/life12020205
Nesci S, Lenaz G. Impaired Mitochondrial Bioenergetics under Pathological Conditions. Life. 2022; 12(2):205. https://doi.org/10.3390/life12020205
Chicago/Turabian StyleNesci, Salvatore, and Giorgio Lenaz. 2022. "Impaired Mitochondrial Bioenergetics under Pathological Conditions" Life 12, no. 2: 205. https://doi.org/10.3390/life12020205
APA StyleNesci, S., & Lenaz, G. (2022). Impaired Mitochondrial Bioenergetics under Pathological Conditions. Life, 12(2), 205. https://doi.org/10.3390/life12020205