Do Not Give Up Your Stethoscopes Yet—Telemedicine for Chronic Respiratory Diseases in the Era of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Resources
2.2. Selection and Exclusion Procedures
3. Telemedicine Prior to the Emergence of COVID-19
4. Telemedicine in Outpatient Management of Chronic Respiratory Diseases
5. Telemedicine in the Management of Critically Ill Patients
6. Telemedicine in the Management of COVID-19
7. Limitations of Telemedicine in Managing Chronic Respiratory Diseases
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zundel, K.M. Telemedicine: History, applications, and impact on librarianship. Bull. Med Libr. Assoc. 1996, 84, 71–79. [Google Scholar] [PubMed]
- Goldstein, R.S.; O’Hoski, S. Telemedicine in COPD: Time to pause. Chest 2014, 145, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Vitacca, M.; Montini, A.; Comini, L. How will telemedicine change clinical practice in chronic obstructive pulmonary disease? Ther. Adv. Respir. Dis. 2018, 12, 1753465818754778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, J.; Petterson, V. Introduction to the Practice of Telemedicine. J. Telemed. Telecare 2005, 11, 3–9. [Google Scholar] [CrossRef]
- Nittari, G.; Khuman, R.; Baldoni, S.; Pallotta, G.; Battineni, G.; Sirignano, A.; Amenta, F.; Ricci, G. Telemedicine Practice: Review of the Current Ethical and Legal Challenges. Telemed. E-Health 2020, 26, 1427–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, M.L.; Ray, K.N.; Souza, J.; Mehrotra, A. Trends in Telemedicine Use in a Large Commercially Insured Population, 2005-2017. JAMA J. Am. Med Assoc. 2018, 320, 2147–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koonin, L.M.; Hoots, B.; Tsang, C.A.; Leroy, Z.; Farris, K.; Jolly, B.; Antall, P.; McCabe, B.; Zelis, C.B.; Tong, I.; et al. Trends in the Use of Telehealth During the Emergence of the COVID-19 Pandemic—United States, January–March 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 1595–1599. [Google Scholar] [CrossRef]
- Mann, D.M.; Chen, J.; Chunara, R.; Testa, P.; Nov, O. COVID-19 transforms health care through telemedicine: Evidence from the field. J. Am. Med. Inform. Assoc. 2020, 27, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Rockwell, K.L.; Gilroy, A.S. Incorporating telemedicine as part of COVID-19 outbreak response systems. Am. J. Manag. Care 2020, 26, 147–148. [Google Scholar] [CrossRef]
- Orozco-Beltran, D.; Sánchez-Molla, M.; Sanchez, J.J.; Mira, J.J.; ValCrònic Research Group. Telemedicine in Primary Care for Patients With Chronic Conditions: The ValCrònic Quasi-Experimental Study. J. Med. Internet Res. 2017, 19, e400. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.I.; Alstadhaug, K.B.; Bekkelund, S.I. A randomized trial of telemedicine efficacy and safety for nonacute headaches. Neurology 2017, 89, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, M.E.; Adhikari, N. The effect of telemedicine in critically ill patients: Systematic review and meta-analysis. Crit. Care 2012, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilly, C.M.; McLaughlin, J.M.; Zhao, H.; Baker, S.P.; Cody, S.; Irwin, R.S.; UMass Memorial Critical Care Operations Group. A Multicenter Study of ICU Telemedicine Reengineering of Adult Critical Care. Chest 2014, 145, 500–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadzinski, A.; Andino, J.; Odisho, A.Y.; Watts, K.L.; Gore, J.L.; Ellimoottil, C. Telemedicine and eConsults for Hospitalized Patients During COVID-19. Urology 2020, 141, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Raza, T.; Joshi, M.; Schapira, R.M.; Agha, Z. Pulmonary telemedicine—A model to access the subspecialist services in underserved rural areas. Int. J. Med. Inform. 2009, 78, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Cordova, F.C.; Ciccolella, D.; Grabianowski, C.; Gaughan, J.; Brennan, K.; Goldstein, F.; Jacobs, M.R.; Criner, G.J. A Telemedicine-Based Intervention Reduces the Frequency and Severity of COPD Exacerbation Symptoms: A Randomized, Controlled Trial. Telemed. E-Health 2016, 22, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, S.; Devos, R.; North, M.; Chauhan, A.; Green, B.; Brown, T.; Cornelius, V.; Wilkinson, T. Online versus face-to-face pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: Randomised controlled trial. BMJ Open 2017, 7, e014580. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulou, M.; Papaioannou, A.I.; Kaltsakas, G.; Louvaris, Z.; Chynkiamis, N.; Spetsioti, S.; Kortianou, E.; Genimata, S.A.; Palamidas, A.; Kostikas, K.; et al. Home-based maintenance tele-rehabilitation reduces the risk for acute exacerbations of COPD, hospitalisations and emergency department visits. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, Y.; Xu, G.; Ding, Z. Effectiveness of Telemedicine Intervention for Chronic Obstructive Pulmonary Disease in China: A Systematic Review and Meta-Analysis. Telemed. E-Health 2020, 26, 1075–1092. [Google Scholar] [CrossRef]
- Gaveikaite, V.; Grundstrom, C.; Winter, S.; Chouvarda, I.; Maglaveras, N.; Priori, R. A systematic map and in-depth review of European telehealth interventions efficacy for chronic obstructive pulmonary disease. Respir. Med. 2019, 158, 78–88. [Google Scholar] [CrossRef]
- Portnoy, J.M.; Waller, M.; De Lurgio, S.; Dinakar, C. Telemedicine is as effective as in-person visits for patients with asthma. Ann. Allergy Asthma Immunol. 2016, 117, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Halterman, J.S.; Fagnano, M.; Tajon, R.S.; Tremblay, P.; Wang, H.; Butz, A.; Perry, T.T.; McConnochie, K.M. Effect of the School-Based Telemedicine Enhanced Asthma Management (SB-TEAM) program on asthma morbidity: A randomized clinical trial. JAMA Pediatrics 2018, 172, e174938. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Cristaldi, K.K.; Summer, A.P.; Su, Z.; Marsden, J.; Mauldin, P.D.; McElligott, J.T. Association of a School-Based, Asthma-Focused Telehealth Program With Emergency Department Visits Among Children Enrolled in South Carolina Medicaid. JAMA Pediatr. 2019, 173, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Blake, K.V. Telemedicine and adherence monitoring in children with asthma. Curr. Opin. Pulm. Med. 2021, 27, 37–44. [Google Scholar] [CrossRef]
- Mammen, J.R.; Schoonmaker, J.D.; Java, J.; Halterman, J.; Berliant, M.N.; Crowley, A.; Reznik, M.; Feldman, J.M.; Fortuna, R.J.; Frey, S.M.; et al. Going mobile with primary care: Smartphone-telemedicine for asthma management in young urban adults (TEAMS). J. Asthma 2020, 1–13. [Google Scholar] [CrossRef]
- Kim, C.; Lieng, M.K.; Rylee, T.L.; Gee, K.A.; Marcin, J.P.; Melnikow, J.A. School-Based Telemedicine Interventions for Asthma: A Systematic Review. Acad. Pediatr. 2020, 20, 893–901. [Google Scholar] [CrossRef]
- Jain, S.; Thakur, C.; Kumar, P.; Goyal, J.P.; Singh, K. Telemedicine for Asthma Follow-up in Children During COVID-19 Pandemic. Indian J. Pediatr. 2021, 88, 1050. [Google Scholar] [CrossRef]
- Celi, L.A.; Hassan, E.; Marquardt, C.; Breslow, M.; Rosenfeld, B. The eICU: It’s not just telemedicine. Crit. Care Med. 2001, 29, N183–N189. [Google Scholar] [CrossRef]
- Gutsche, J.T.; Raiten, J.M. Staffing Models for the ICU: Open, Closed, MD, NP, or Telemedicine? Curr. Anesthesiol. Rep. 2013, 3, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Willmitch, B.; Golembeski, S.; Kim, S.S.; Nelson, L.D.; Gidel, L. Clinical outcomes after telemedicine intensive care unit implementation. Crit. Care Med. 2012, 40, 450–454. [Google Scholar] [CrossRef]
- Sadaka, F.; Palagiri, A.; Trottier, S.; Deibert, W.; Gudmestad, D.; Sommer, S.E.; Veremakis, C. Telemedicine Intervention Improves ICU Outcomes. Crit. Care Res. Pract. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, B.A.; Dorman, T.; Breslow, M.J.; Pronovost, P.; Jenckes, M.; Zhang, N.; Anderson, G.; Rubin, H. Intensive care unit telemedicine: Alternate paradigm for providing continuous intensivist care. Crit. Care Med. 2000, 28, 3925–3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnow-Mordi, W.; Hau, C.; Warden, A.; Shearer, A. Hospital mortality in relation to staff workload: A 4-year study in an adult intensive-care unit. Lancet 2000, 356, 185–189. [Google Scholar] [CrossRef]
- Amaravadi, R.K.; Dimick, J.B.; Pronovost, P.J.; Lipsett, P.A. ICU nurse-to-patient ratio is associated with complications and resource use after esophagectomy. Intensive Care Med. 2000, 26, 1857–1862. [Google Scholar] [CrossRef]
- Lasater, K.B.; Aiken, L.H.; Sloane, D.M.; French, R.; Martin, B.; Reneau, K.; Alexander, M.; McHugh, M.D. Chronic hospital nurse understaffing meets COVID-19: An observational study. BMJ Qual. Saf. 2021, 30, 639–647. [Google Scholar] [CrossRef]
- Kleinpell, R.; Barden, C.; Rincon, T.; McCarthy, M.; Rufo, R.J.Z. Assessing the Impact of Telemedicine on Nursing Care in Intensive Care Units. Am. J. Crit. Care 2016, 25, e14–e20. [Google Scholar] [CrossRef] [PubMed]
- Young, L.B.; Chan, P.S.; Cram, P. Staff Acceptance of Tele-ICU Coverage: A Systematic Review. Chest 2011, 139, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Hamm, J.M.; Greene, C.; Sweeney, M.; Mohammadie, S.; Thompson, L.B.; Wallace, E.; Schrading, W. Telemedicine in the emergency department in the era of COVID-19: Front-line experiences from 2 institutions. J. Am. Coll. Emerg. Physicians Open 2020, 1, 1630–1636. [Google Scholar] [CrossRef]
- Zhang, H.; Dimitrov, D.; Simpson, L.; Singh, B.; Plaks, N.; Penney, S.; Charles, J.; Sheehan, R.; Flammini, S.; Murphy, S.; et al. A web-based, mobile responsive application to screen healthcare workers for COVID symptoms: Descriptive study. MedRxiv 2020. [Google Scholar] [CrossRef]
- Lukas, H.; Xu, C.; Yu, Y.; Gao, W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS Nano 2020, 14, 16180–16193. [Google Scholar] [CrossRef]
- Jeong, H.; Rogers, J.A.; Xu, S. Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Sci. Adv. 2020, 6, eabd4794. [Google Scholar] [CrossRef] [PubMed]
- Adans-Dester, C.P.; Bamberg, S.; Bertacchi, F.P.; Caulfield, B.; Chappie, K.; Demarchi, D.; Erb, M.K.; Estrada, J.; Fabara, E.E.; Freni, M.; et al. Can mHealth Technology Help Mitigate the Effects of the COVID-19 Pandemic? IEEE Open J. Eng. Med. Biol. 2020, 1, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Lovato, A.; De Filippis, C. Clinical Presentation of COVID-19: A Systematic Review Focusing on Upper Airway Symptoms. Ear, Nose Throat J. 2020, 99, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N. Engl. J. Med. 2020, 382, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Berkhof, F.F.; Berg, J.W.V.D.; Uil, S.M.; Kerstjens, H.A. Telemedicine, the effect of nurse-initiated telephone follow up, on health status and health-care utilization in COPD patients: A randomized trial. Respirology 2015, 20, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Pinnock, H.; Hanley, J.; McCloughan, L.; Todd, A.; Krishan, A.; Lewis, S.; Stoddart, A.; Van Der Pol, M.; MacNee, W.; Sheikh, A.; et al. Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: Researcher blind, multicentre, randomised controlled trial. BMJ 2013, 347, f6070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, M.; Van Heukelom, P.G.; Ahmed, A.; Tranter, R.D.; White, E.; Shekem, N.; Walz, D.; Fairfield, C.; Vakkalanka, J.P.; Mohr, N.M. Telemedicine Physical Examination Utilizing a Consumer Device Demonstrates Poor Concordance with In-Person Physical Examination in Emergency Department Patients with Sore Throat: A Prospective Blinded Study. Telemed. E-Health 2018, 24, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Pacht, E.R.; Turner, J.W.; Gailiun, M.; Violi, L.A.; Ralston, D.; Mekhjian, H.S.; John, R.C.S. Effectiveness of Telemedicine in the Outpatient Pulmonary Clinic. Telemed. J. 1998, 4, 287–292. [Google Scholar] [CrossRef]
- Kalra, S.; Mutreja, P.; Goyal, A.; Dixit, A. A low-cost solution for converting existing stethoscope into tele-stethoscope in resource-constrained setting for COVID-19 pandemic. J. Fam. Med. Prim. Care 2020, 9, 5435–5436. [Google Scholar] [CrossRef]
- Kumar, G.; Falk, D.M.; Bonello, R.S.; Kahn, J.M.; Perencevich, E.; Cram, P. The costs of critical care telemedicine programs: A systematic review and analysis. Chest 2013, 143, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Armaignac, D.L.; Saxena, A.; Rubens, M.; Valle, C.A.; Williams, L.M.S.; Veledar, E.; Gidel, L.T. Impact of telemedicine on mortality, length of stay, and cost among patients in progressive care units: Experience from a large healthcare system. Crit. Care Med. 2018, 46, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, C.; Zhang, Y.; Chaiyachati, K.H.; Polsky, D. The limitations of poor broadband internet access for telemedicine use in rural America: An observational study. Ann. Intern. Med. 2019, 171, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Nouri, S.; Khoong, E.C.; Lyles, C.R.; Karliner, L. Addressing Equity in Telemedicine for Chronic Disease Management During the Covid-19 Pandemic. NEJM Catal. Innov. Care Deliv. 2020, 1, 3. [Google Scholar]
- Ye, S.; Kronish, I.; Fleck, E.; Fleischut, P.; Homma, S.; Masini, D.; Moise, N. Telemedicine Expansion During the COVID-19 Pandemic and the Potential for Technology-Driven Disparities. J. Gen. Intern. Med. 2021, 36, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Maisano, A.; Bonini, N.; Albini, A.; Imberti, J.F.; Venturelli, A.; Menozzi, M.; Ziveri, V.; Morgante, V.; Camaioni, G.; et al. Digital literacy as a potential barrier to implementation of cardiology tele-visits after COVID-19 pandemic: The INFO-COVID survey. J. Geriatr. Cardiol. 2021, 18, 739–747. [Google Scholar] [PubMed]
- Hsiao, V.; Chandereng, T.; Lankton, R.L.; Huebner, J.A.; Baltus, J.J.; Flood, G.E.; Dean, S.M.; Tevaarwerk, A.J.; Schneider, D.F. Disparities in Telemedicine Access: A Cross-Sectional Study of a Newly Established Infrastructure during the COVID-19 Pandemic. Appl. Clin. Inform. 2021, 12, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Hyman, P. The Disappearance of the Primary Care Physical Examination—Losing Touch. JAMA Intern. Med. 2020, 180, 1417. [Google Scholar] [CrossRef]
- Zuiderent-Jerak, T.; Winthereik, B.R.; Berg, M. Talking About Distributed Communication and Medicine: On Bringing Together Remote and Local Actors. Hum.–Comput. Interact. 2003, 18, 171–180. [Google Scholar] [CrossRef]
Component of Healthcare | Details |
---|---|
Diagnosis and Triaging | -Enable patient–provider encounters while reducing risk of infectious disease. -Increase access to evaluation by physicians and advanced practice providers via teleconsultation. -Enable expedient triaging of patients in urgent care and emergency departments via teleconsultation. -Expedite access to specialty medical care via remote teleconsultation from a centralized telemedicine center. -Identify patients who require additional evaluation based on reported symptoms. |
Treatment | -Facilitate access to providers to discuss medication efficacy or changes in symptoms which may warrant further diagnostic evaluation or changes in course of care. -Reduce nursing workload by increasing access to the care team. -Encourage medication compliance and participation in rehabilitation treatments. |
Monitoring | -Monitor vital signs and serology to identify clinical deterioration. |
Investigation | Sample Size | Selected Primary Findings |
---|---|---|
Lilly et al. [13] | 118,990 | *-Significant adjusted hospital (HR: 0.84, CI: 0.78-0.89) and intensive care unit (HR: 0.74, CI: 0.68-0.79) mortality reduction for telemedicine cohort. -Adjusted length of stay by 0.5, 1.0, and 3.6 days for patients who stayed in the hospital for ≥7, ≥14, and ≥30 days respectively. -Adjusted intensive care unit length of stay by 1.1, 2.5, and 4.5 days for patients who stayed in the intensive care unit for ≥7, ≥14, and ≥30 days respectively.* |
Willmitch et al. [30] | 24,656 | *-Severity adjusted hospital length of stay was significantly reduced by 14.2% and severity adjusted intensive care unit length of stay was reduced by 12.6% following introduction of continuous remote intensivist monitoring. -Relative risk of in-hospital mortality was also significantly reduced by 23%.* |
Rosenfeld et al. [32] | 225 (Period 1) 202 (Period 2) 201 (Intervention) | *-Severity adjusted intensive care unit mortality decreased by 46-68% and severity adjusted hospital mortality decreased by 30–33% following by introduction of continuous remote intensivist monitoring. -Intensive care unit length of stay also decreased by 30–34% and intensive care unit admission cost decreased by 33–36%.* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeone, S.; Condit, D.; Nadler, E. Do Not Give Up Your Stethoscopes Yet—Telemedicine for Chronic Respiratory Diseases in the Era of COVID-19. Life 2022, 12, 222. https://doi.org/10.3390/life12020222
Simeone S, Condit D, Nadler E. Do Not Give Up Your Stethoscopes Yet—Telemedicine for Chronic Respiratory Diseases in the Era of COVID-19. Life. 2022; 12(2):222. https://doi.org/10.3390/life12020222
Chicago/Turabian StyleSimeone, Stephen, Daniel Condit, and Evan Nadler. 2022. "Do Not Give Up Your Stethoscopes Yet—Telemedicine for Chronic Respiratory Diseases in the Era of COVID-19" Life 12, no. 2: 222. https://doi.org/10.3390/life12020222
APA StyleSimeone, S., Condit, D., & Nadler, E. (2022). Do Not Give Up Your Stethoscopes Yet—Telemedicine for Chronic Respiratory Diseases in the Era of COVID-19. Life, 12(2), 222. https://doi.org/10.3390/life12020222